Cao Hiep Xuan, Jung Daewon, Lee Han-Sol, Nguyen Van Du, Choi Eunpyo, Kim Chang-Sei, Park Jong-Oh, Kang Byungjeon
School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea.
Micromachines (Basel). 2022 Dec 9;13(12):2182. doi: 10.3390/mi13122182.
The ultrasonic actuator can be used in medical applications because it is label-free, biocompatible, and has a demonstrated history of safe operation. Therefore, there is an increasing interest in using an ultrasonic actuator in the non-contact manipulation of micromachines in various materials and sizes for therapeutic applications. This research aims to design, fabricate, and characterize a single-sided transducer array with 56 channels operating at 500 kHz, which provide benefits in the penetration of tissue. The fabricated transducer is calibrated using a phase reference calibration method to reduce position misalignment and phase discrepancies caused by acoustic interaction. The acoustic fields generated by the transducer array are measured in a 300 mm × 300 mm × 300 mm container filled with de-ionized water. A hydrophone is used to measure the far field in each transducer array element, and the 3D holographic pattern is analyzed based on the scanned acoustic pressure fields. Next, the phase reference calibration is applied to each transducer in the ultrasonic actuator. As a result, the homogeneity of the acoustic pressure fields surrounding the foci area is improved, and the maximum pressure is also increased in the twin trap. Finally, we demonstrate the capability to trap and manipulate micromachines with acoustic power by generating a twin trap using both optical camera and ultrasound imaging systems in a water medium. This work not only provides a comprehensive study on acoustic actuators but also inspires the next generation to use acoustics in medical applications.
超声致动器可用于医疗应用,因为它无需标记、具有生物相容性,且有安全运行的历史记录。因此,人们越来越有兴趣将超声致动器用于各种材料和尺寸的微机械的非接触式操纵,以用于治疗应用。本研究旨在设计、制造并表征一个具有56个通道、工作频率为500 kHz的单面换能器阵列,该阵列在组织穿透方面具有优势。使用相位参考校准方法对制造的换能器进行校准,以减少由声学相互作用引起的位置失准和相位差异。在一个装满去离子水的300毫米×300毫米×300毫米的容器中测量换能器阵列产生的声场。使用水听器测量每个换能器阵列元件的远场,并基于扫描的声压场分析三维全息图案。接下来,对超声致动器中的每个换能器应用相位参考校准。结果,焦点区域周围声压场的均匀性得到改善,双阱中的最大压力也有所增加。最后,我们通过在水介质中使用光学相机和超声成像系统生成双阱,展示了利用声功率捕获和操纵微机械的能力。这项工作不仅提供了关于声学致动器的全面研究,也激励了下一代在医疗应用中使用声学技术。