Suppr超能文献

基于机器学习对组合式Co-Cr-Fe-Ni成分复杂合金薄膜纳米结构的表征

Machine Learning-Based Characterization of the Nanostructure in a Combinatorial Co-Cr-Fe-Ni Compositionally Complex Alloy Film.

作者信息

Nagy Péter, Kaszás Bálint, Csabai István, Hegedűs Zoltán, Michler Johann, Pethö László, Gubicza Jenő

机构信息

Department of Materials Physics, Eötvös Loránd University, 1117 Budapest, Hungary.

Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, 3602 Thun, Switzerland.

出版信息

Nanomaterials (Basel). 2022 Dec 10;12(24):4407. doi: 10.3390/nano12244407.

Abstract

A novel artificial intelligence-assisted evaluation of the X-ray diffraction (XRD) peak profiles was elaborated for the characterization of the nanocrystallite microstructure in a combinatorial Co-Cr-Fe-Ni compositionally complex alloy (CCA) film. The layer was produced by a multiple beam sputtering physical vapor deposition (PVD) technique on a Si single crystal substrate with the diameter of about 10 cm. This new processing technique is able to produce combinatorial CCA films where the elemental concentrations vary in a wide range on the disk surface. The most important benefit of the combinatorial sample is that it can be used for the study of the correlation between the chemical composition and the microstructure on a single specimen. The microstructure can be characterized quickly in many points on the disk surface using synchrotron XRD. However, the evaluation of the diffraction patterns for the crystallite size and the density of lattice defects (e.g., dislocations and twin faults) using X-ray line profile analysis (XLPA) is not possible in a reasonable amount of time due to the large number (hundreds) of XRD patterns. In the present study, a machine learning-based X-ray line profile analysis (ML-XLPA) was developed and tested on the combinatorial Co-Cr-Fe-Ni film. The new method is able to produce maps of the characteristic parameters of the nanostructure (crystallite size, defect densities) on the disk surface very quickly. Since the novel technique was developed and tested only for face-centered cubic (FCC) structures, additional work is required for the extension of its applicability to other materials. Nevertheless, to the knowledge of the authors, this is the first ML-XLPA evaluation method in the literature, which can pave the way for further development of this methodology.

摘要

为了表征组合式Co-Cr-Fe-Ni成分复杂合金(CCA)薄膜中的纳米微晶微观结构,精心设计了一种新颖的人工智能辅助X射线衍射(XRD)峰形评估方法。该薄膜层是通过多束溅射物理气相沉积(PVD)技术在直径约10 cm的Si单晶衬底上制备的。这种新的加工技术能够制备组合式CCA薄膜,其中元素浓度在圆盘表面上有很大范围的变化。组合式样品的最重要优点是它可用于研究单个试样上化学成分与微观结构之间的相关性。利用同步加速器XRD可以快速表征圆盘表面许多点的微观结构。然而,由于XRD图谱数量众多(数百个),使用X射线线形分析(XLPA)来评估微晶尺寸和晶格缺陷(例如位错和孪晶缺陷)密度的衍射图谱,在合理的时间内是不可能的。在本研究中,开发了一种基于机器学习的X射线线形分析(ML-XLPA)方法,并在组合式Co-Cr-Fe-Ni薄膜上进行了测试。这种新方法能够非常快速地生成圆盘表面纳米结构特征参数(微晶尺寸、缺陷密度)的图谱。由于这项新技术仅针对面心立方(FCC)结构进行了开发和测试,因此需要额外的工作将其适用性扩展到其他材料。尽管如此,据作者所知,这是文献中第一种ML-XLPA评估方法,可为该方法的进一步发展铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/9786732/efd807ea8a36/nanomaterials-12-04407-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验