Khanna Sumeer R, Stanford Michael G, Vlassiouk Ivan V, Rack Philip D
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA.
General Graphene Corporation, Knoxville, TN 37932, USA.
Nanomaterials (Basel). 2022 May 4;12(9):1553. doi: 10.3390/nano12091553.
We synthesized a combinatorial library of CuxNi1−x alloy thin films via co-sputtering from Cu and Ni targets to catalyze graphene chemical vapor deposition. The alloy morphology, composition, and microstructure were characterized via scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and X-ray diffraction (XRD), respectively. Subsequently, the CuxNi1−x alloy thin films were used to grow graphene in a CH4-Ar-H2 ambient at atmospheric pressure. The underlying rationale is to adjust the CuxNi1−x composition to control the graphene. Energy dispersive x-ray spectroscopy (EDS) analysis revealed that a continuous gradient of CuxNi1−x (25 at. % < x < 83 at.%) was initially achieved across the 100 mm diameter substrate (~0.9%/mm composition gradient). The XRD spectra confirmed a solid solution was realized and the face-centered cubic lattice parameter varied from ~3.52 to 3.58 A˙, consistent with the measured composition gradient, assuming Vegard’s law. Optical microscopy and Raman analysis of the graphene layers suggest single layer growth occurs with x > 69 at.%, bilayer growth dominates from 48 at.% < x < 69 at.%, and multilayer (≥3) growth occurs for x < 48 at.%, where x is the Cu concentration. Finally, a large area of bi-layer graphene was grown via a CuxNi1−x catalyst with optimized catalyst composition and growth temperature.
我们通过从铜靶和镍靶共溅射合成了一个CuxNi1−x合金薄膜的组合库,用于催化石墨烯化学气相沉积。分别通过扫描电子显微镜(SEM)、能量色散X射线光谱(EDS)和X射线衍射(XRD)对合金的形态、成分和微观结构进行了表征。随后,将CuxNi1−x合金薄膜用于在常压下的CH4-Ar-H2气氛中生长石墨烯。其基本原理是调整CuxNi1−x的成分来控制石墨烯。能量色散X射线光谱(EDS)分析表明,最初在100毫米直径的衬底上实现了CuxNi1−x(25原子% < x < 83原子%)的连续梯度(成分梯度约为0.9%/毫米)。XRD光谱证实形成了固溶体,面心立方晶格参数从约3.52到3.58 Å变化,假设维加德定律,这与测量的成分梯度一致。对石墨烯层的光学显微镜和拉曼分析表明,当x > 69原子%时发生单层生长,当48原子% < x < 69原子%时双层生长占主导,当x < 48原子%时发生多层(≥3层)生长,其中x为铜浓度。最后,通过具有优化催化剂成分和生长温度的CuxNi1−x催化剂生长出了大面积的双层石墨烯。