文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects.

作者信息

AbouAitah Khaled, Soliman Ahmed A F, Swiderska-Sroda Anna, Nassrallah Amr, Smalc-Koziorowska Julita, Gierlotka Stanislaw, Lojkowski Witold

机构信息

Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt.

Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St, Dokki, Giza 12622, Egypt.

出版信息

Pharmaceutics. 2022 Dec 11;14(12):2770. doi: 10.3390/pharmaceutics14122770.


DOI:10.3390/pharmaceutics14122770
PMID:36559264
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9785757/
Abstract

Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. One way to overcome these barriers is to combine natural agents with nanoparticles. Our aim in the current study was to fabricate an anticancer nanoformulation for co-delivery of two natural agents, curcumin (CR) and colchicine (CL), with a core-shell structure. Using cancer cell lines, we compared the anticancer efficacy between the combination and a nanoformulation with CL alone. Methods: For the single-drug nanoformulation, we used phosphonate groups to functionalize mesoporous silica nanoparticles (MSNs) and loaded the MSNs with CL. Additional loading of this nanoformulation with CR achieved the co-delivery format. To create the structure with a core shell, we selected a chitosan−cellulose mixture conjugated with targeting ligands of folic acid for the coating. For evaluating anticancer and apoptosis effects, we assessed changes in important genes and proteins in apoptosis (p53, caspase-3, Bax, Bcl-2) in several cell lines (MCF-7, breast adenocarcinoma; HCT-116, colon carcinoma; HOS, human osteosarcoma; and A-549, non−small cell lung cancer). Results: Nanoformulations were successfully synthesized and contained 10.9 wt.% for the CL single-delivery version and 18.1 wt.% for the CL+CR co-delivery nanoformulation. Anticancer effects depended on treatment, cell line, and concentration. Co-delivery nanoformulations exerted anticancer effects that were significantly superior to those of single delivery or free CL or CR. Anticancer effects by cell line were in the order of HCT-116 > A549 > HOS > MCF-7. The lowest IC50 value was obtained for the nanoformulation consisting of CL and CR coated with a polymeric shell conjugated with FA (equivalent to 4.1 ± 0.05 µg/mL). With dual delivery compared with the free agents, we detected strongly increased p53, caspase-3, and Bax expression, but inhibition of Bcl-2, suggesting promotion of apoptosis. Conclusions: Our findings, although preliminary, indicate that the proposed dual delivery nanoformulation consisting of nanocore: MSNs loaded with CL and CR and coated with a shell of chitosan−cellulose conjugated folic acid exerted strong anticancer and apoptotic effects with potent antitumor activity against HCT-116 colon cells. The effect bested CL alone. Evaluating and confirming the efficacy of co-delivery nanoformulations will require in vivo studies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/6597e28200c0/pharmaceutics-14-02770-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/2368ec421185/pharmaceutics-14-02770-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/9c2bba82ccfa/pharmaceutics-14-02770-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/eddc29297d06/pharmaceutics-14-02770-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/59da875a49fd/pharmaceutics-14-02770-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/975d152987ab/pharmaceutics-14-02770-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/90c9d0812a84/pharmaceutics-14-02770-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/69198fcbc1e4/pharmaceutics-14-02770-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/4f6864e6463d/pharmaceutics-14-02770-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/d77a2aae2237/pharmaceutics-14-02770-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/d5eb5562d2a8/pharmaceutics-14-02770-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/6597e28200c0/pharmaceutics-14-02770-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/2368ec421185/pharmaceutics-14-02770-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/9c2bba82ccfa/pharmaceutics-14-02770-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/eddc29297d06/pharmaceutics-14-02770-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/59da875a49fd/pharmaceutics-14-02770-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/975d152987ab/pharmaceutics-14-02770-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/90c9d0812a84/pharmaceutics-14-02770-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/69198fcbc1e4/pharmaceutics-14-02770-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/4f6864e6463d/pharmaceutics-14-02770-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/d77a2aae2237/pharmaceutics-14-02770-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/d5eb5562d2a8/pharmaceutics-14-02770-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e2/9785757/6597e28200c0/pharmaceutics-14-02770-g010.jpg

相似文献

[1]
Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects.

Pharmaceutics. 2022-12-11

[2]
Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release.

Int J Nanomedicine. 2019-7-19

[3]
Folic acid-conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action.

Oncotarget. 2018-5-29

[4]
Targeted Nano-Drug Delivery of Colchicine against Colon Cancer Cells by Means of Mesoporous Silica Nanoparticles.

Cancers (Basel). 2020-1-7

[5]
Efficacy of Curcumin-Loaded Amine-Functionalized Mesoporous Silica Nanoparticles against MCF-7 Breast Cancer Cells.

Adv Pharm Bull. 2023-3

[6]
Functionalized Carbon Nanotubes for Delivery of Ferulic Acid and Diosgenin Anticancer Natural Agents.

ACS Appl Bio Mater. 2024-2-19

[7]
Antibacterial Effect of Co-Loaded Curcumin and Rutin in Mesoporous Silica Nanoparticles Compared to their Loading Alone.

Infect Disord Drug Targets. 2025

[8]
Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: practical strategy for the breast cancer therapy.

Eur J Med Chem. 2014-6-28

[9]
Rational Design of Multifunctional Dendritic Mesoporous Silica Nanoparticles to Load Curcumin and Enhance Efficacy for Breast Cancer Therapy.

ACS Appl Mater Interfaces. 2016-9-27

[10]
Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia.

Int J Pharm. 2020-8-30

引用本文的文献

[1]
Revitalizing Colchicine: Novel Delivery Platforms and Derivatives to Expand Its Therapeutic Potential.

Int J Mol Sci. 2025-8-6

[2]
Material-Driven Therapeutics: Functional Nanomaterial Design Paradigms Revolutionizing Osteosarcoma Treatment.

J Funct Biomater. 2025-6-5

[3]
Advances in lysosomal escape mechanisms for gynecological cancer nano-therapeutics.

J Pharm Anal. 2024-12

[4]
An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success.

Discov Nano. 2023-12-19

[5]
Engineered nanomaterials enhance drug delivery strategies for the treatment of osteosarcoma.

Front Pharmacol. 2023-8-21

[6]
Curcumin-loaded mesoporous silica nanoparticles for drug delivery: synthesis, biological assays and therapeutic potential - a review.

RSC Adv. 2023-7-24

[7]
Sustained-Release Powders Based on Polymer Particles for Pulmonary Delivery of Beclomethasone Dipropionate in the Treatment of Lung Inflammation.

Pharmaceutics. 2023-4-14

[8]
Curcumin and its Analogs and Carriers: Potential Therapeutic Strategies for Human Osteosarcoma.

Int J Biol Sci. 2023

本文引用的文献

[1]
Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies.

Int J Mol Sci. 2022-9-2

[2]
Fabrication of a pH/Redox-Triggered Mesoporous Silica-Based Nanoparticle with Microfluidics for Anticancer Drugs Doxorubicin and Paclitaxel Codelivery.

ACS Appl Bio Mater. 2020-2-17

[3]
Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant.

J Control Release. 2021-8-10

[4]
Folic acid-hydrophilic polymer coated mesoporous silica nanoparticles target doxorubicin delivery.

Pharm Dev Technol. 2021-6

[5]
Facile Fabrication Route of Janus Gold-Mesoporous Silica Nanocarriers with Dual-Drug Delivery for Tumor Therapy.

ACS Biomater Sci Eng. 2020-3-9

[6]
A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies.

Front Chem. 2020-11-24

[7]
Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs.

Int J Nanomedicine. 2020-7-22

[8]
Crude Methanol Extract of Rosin Gum Exhibits Specific Cytotoxicity against Human Breast Cancer Cells via Apoptosis Induction.

Anticancer Agents Med Chem. 2020

[9]
Involvement of p53-dependent apoptosis signal in antitumor effect of Colchicine on human papilloma virus (HPV)-positive human cervical cancer cells.

Biosci Rep. 2020-3-27

[10]
Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast cancer therapy.

Colloids Surf B Biointerfaces. 2020-1-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索