Monti Joseph M, Grest Gary S
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Phys Rev E. 2022 Nov;106(5-1):054153. doi: 10.1103/PhysRevE.106.054153.
Explicit simulations of fluid mixtures of highly size-dispersed particles are constrained by numerical challenges associated with identifying pair-interaction neighbors. Recent algorithmic developments have ameliorated these difficulties to an extent, permitting more efficient simulations of systems with many large and small particles of disperse sizes. We leverage these capabilities to perform molecular dynamics simulations of binary sphere mixtures with elastically stiff particles approaching the hard sphere limit and particle size ratios of up to 50, approaching the colloidal limit. The systems considered consist of 500 large particles and up to nearly 3.6×10^{6} small particles with total particle volume fractions up to 0.51. Our simulations confirm qualitative predictions for correlations between large particles previously obtained analytically and for simulations employing effective depletion interactions, but also reveal additional insights into the near-contact structure that result from the explicit treatment of the small particle solvent. No spontaneous crystal nucleation was observed during the simulations, suggesting that nucleation rates in the fluid-solid coexistence region are too small to observe crystal nucleation for feasible simulation system sizes and timescales.
对高度尺寸分散颗粒的流体混合物进行显式模拟受到与识别对相互作用邻居相关的数值挑战的限制。最近的算法发展在一定程度上缓解了这些困难,使得对具有许多不同尺寸的大颗粒和小颗粒的系统进行更高效的模拟成为可能。我们利用这些能力对二元球体混合物进行分子动力学模拟,其中弹性刚性颗粒接近硬球极限,粒径比高达50,接近胶体极限。所考虑的系统由500个大颗粒和多达近3.6×10⁶个小颗粒组成,总颗粒体积分数高达0.51。我们的模拟证实了先前通过解析方法以及采用有效耗散相互作用的模拟所得到的关于大颗粒之间相关性的定性预测,但同时也揭示了由于对小颗粒溶剂的显式处理而产生的关于近接触结构的更多见解。在模拟过程中未观察到自发晶体成核现象,这表明在流体 - 固体共存区域中的成核速率太小,以至于对于可行的模拟系统尺寸和时间尺度而言无法观察到晶体成核。