Suppr超能文献

基于三层 GA-BP 神经网络的最优水下声攻防策略。

Optimal Underwater Acoustic Warfare Strategy Based on a Three-Layer GA-BP Neural Network.

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710000, China.

Shanghai Electronic Ship Research Institute, China Shipbuilding Industry Corporation, Shanghai 201100, China.

出版信息

Sensors (Basel). 2022 Dec 11;22(24):9701. doi: 10.3390/s22249701.

Abstract

A defense platform is usually based on two methods to make underwater acoustic warfare strategy decisions. One is through Monte-Carlo method online simulation, which is slow. The other is by typical empirical (database) and typical back-propagation (BP) neural network algorithms based on genetic algorithm (GA) optimization, which is less accurate and less robust. Therefore, this paper proposes a method to build an optimal underwater acoustic warfare feedback system using a three-layer GA-BP neural network and dropout processing of the neural network to prevent overfitting, so that the three-layer GA-BP neural network has adequate memory capability while still having suitable generalization capability. This method improves the accuracy and stability of the defense platform in making underwater acoustic warfare strategy decisions, thus increasing the survival probability of the defense platform in the face of incoming torpedoes. This paper uses the optimal underwater acoustic warfare strategies corresponding to incoming torpedoes with different postures as the sample set. Additionally, it uses a three-layer GA-BP neural network with an overfitting treatment for training. The prediction results have less error than the typical single-layer GA-BP neural network, and the survival probability of the defense platform improves by 6.15%. This defense platform underwater acoustic warfare strategy prediction method addresses the impact on the survival probability of the defense platform due to the decision speed and accuracy.

摘要

防御平台通常基于两种方法来制定水下声攻防策略决策。一种是通过蒙特卡罗方法在线模拟,这种方法速度较慢。另一种是基于遗传算法 (GA) 优化的典型经验 (数据库) 和典型反向传播 (BP) 神经网络算法,这种方法不够准确和稳健。因此,本文提出了一种使用三层 GA-BP 神经网络和神经网络的 dropout 处理来构建最优水下声攻防反馈系统的方法,以防止过拟合,从而使三层 GA-BP 神经网络具有足够的记忆能力,同时仍然具有适当的泛化能力。该方法提高了防御平台在制定水下声攻防策略决策时的准确性和稳定性,从而提高了防御平台在面对来袭鱼雷时的生存概率。本文使用对应不同姿态来袭鱼雷的最优水下声攻防策略作为样本集,并使用带有过拟合处理的三层 GA-BP 神经网络进行训练。预测结果的误差小于典型的单层 GA-BP 神经网络,防御平台的生存概率提高了 6.15%。这种防御平台水下声攻防策略预测方法解决了决策速度和准确性对防御平台生存概率的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8e5/9782575/62c0caa6dea9/sensors-22-09701-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验