Benmimoun Billel, Winkler Bente, Spéder Pauline
Institut Pasteur, UMR3738 CNRS, 75015 Paris, France.
Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.
Bio Protoc. 2022 Dec 5;12(23). doi: 10.21769/BioProtoc.4563.
Pathogen invasion of the central nervous system (CNS) is an important cause of infection-related mortality worldwide and can lead to severe neurological sequelae. To gain access to the CNS cells, pathogens have to overcome the blood-brain barrier (BBB), a protective fence from blood-borne factors. To study host-pathogen interactions, a number of cell culture and animal models were developed. However, in vitro models do not recapitulate the 3D architecture of the BBB and CNS tissue, and in vivo mammalian models present cellular and technical complexities as well as ethical issues, rendering systematic and genetic approaches difficult. Here, we present a two-pronged methodology allowing and validating the use of larvae as a model system to decipher the mechanisms of infection in a developing CNS. First, an ex vivo protocol based on whole CNS explants serves as a fast and versatile screening platform, permitting the investigation of molecular and cellular mechanisms contributing to the crossing of the BBB and consequences of infection on the CNS. Then, an in vivo CNS infection protocol through direct pathogen microinjection into the fly circulatory system evaluates the impact of systemic parameters, including the contribution of circulating immune cells to CNS infection, and assesses infection pathogenicity at the whole host level. These combined complementary approaches identify mechanisms of BBB crossing and responses of a diversity of CNS cells contributing to infection, as well as novel virulence factors of the pathogen. Nat Commun (2020), DOI: 10.1038/s41467-020-19826-2 Graphical abstract Mammalian neurotropic pathogens could be tested in two central nervous system (CNS) infection setups (ex vivo and in vivo) for their ability to: (1) invade the CNS (pathogen quantifications), (2) disturb blood-brain barrier permeability, (3) affect CNS host cell behaviour (gene expression), and (4) alter host viability.
病原体侵入中枢神经系统(CNS)是全球感染相关死亡的重要原因,可导致严重的神经后遗症。为了进入中枢神经系统细胞,病原体必须克服血脑屏障(BBB),这是一道抵御血源性病原体的保护屏障。为了研究宿主与病原体的相互作用,人们开发了许多细胞培养和动物模型。然而,体外模型无法重现血脑屏障和中枢神经系统组织的三维结构,体内哺乳动物模型存在细胞和技术复杂性以及伦理问题,使得系统和基因研究方法难以实施。在此,我们提出了一种双管齐下的方法,允许并验证使用幼虫作为模型系统来解析发育中的中枢神经系统感染机制。首先,基于全中枢神经系统外植体的离体实验方案可作为一个快速且通用的筛选平台,用于研究血脑屏障穿越的分子和细胞机制以及感染对中枢神经系统的影响。然后,通过将病原体直接显微注射到果蝇循环系统中的体内中枢神经系统感染实验方案,可评估全身参数的影响,包括循环免疫细胞对中枢神经系统感染的作用,并在整个宿主水平评估感染致病性。这些互补方法相结合,可确定血脑屏障穿越机制、多种中枢神经系统细胞对感染的反应以及病原体的新毒力因子。《自然·通讯》(2020年),DOI: 10.1038/s41467-020-19826-2 图形摘要 哺乳动物嗜神经病原体可在两种中枢神经系统感染实验设置(离体和体内)中测试其以下能力:(1)侵入中枢神经系统(病原体定量),(2)扰乱血脑屏障通透性,(3)影响中枢神经系统宿主细胞行为(基因表达),以及(4)改变宿主活力。