Jones Seamus D, Bamford James, Fredrickson Glenn H, Segalman Rachel A
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States.
ACS Polym Au. 2022 Dec 14;2(6):430-448. doi: 10.1021/acspolymersau.2c00024. Epub 2022 Sep 22.
Transport of ions through solid polymeric electrolytes (SPEs) involves a complicated interplay of ion solvation, ion-ion interactions, ion-polymer interactions, and free volume. Nonetheless, prevailing viewpoints on the subject promote a significantly simplified picture, likening ion transport in a polymer to that in an unstructured fluid at low solute concentrations. Although this idealized liquid transport model has been successful in guiding the design of homogeneous electrolytes, structured electrolytes provide a promising alternate route to achieve high ionic conductivity and selectivity. In this perspective, we begin by describing the physical origins of the idealized liquid transport mechanism and then proceed to examine known cases of decoupling between the matrix dynamics and ionic transport in SPEs. Specifically we discuss conditions for "decoupled" mobility that include a highly polar electrolyte environment, a percolated path of free volume elements (either through structured or unstructured channels), high ion concentrations, and labile ion-electrolyte interactions. Finally, we proceed to reflect on the potential of these mechanisms to promote multivalent ion conductivity and the need for research into the interfacial properties of solid polymer electrolytes as well as their performance at elevated potentials.
离子通过固体聚合物电解质(SPEs)的传输涉及离子溶剂化、离子-离子相互作用、离子-聚合物相互作用和自由体积之间复杂的相互作用。尽管如此,关于该主题的主流观点促成了一种显著简化的图景,将聚合物中的离子传输比作低溶质浓度下无结构流体中的离子传输。虽然这种理想化的液体传输模型在指导均质电解质的设计方面取得了成功,但结构化电解质为实现高离子电导率和选择性提供了一条有前景的替代途径。从这个角度出发,我们首先描述理想化液体传输机制的物理起源,然后着手研究SPEs中基质动力学和离子传输之间解耦的已知案例。具体而言,我们讨论了“解耦”迁移率的条件,包括高极性电解质环境、自由体积元素的渗流路径(通过结构化或非结构化通道)、高离子浓度以及不稳定的离子-电解质相互作用。最后,我们思考这些机制促进多价离子传导的潜力,以及研究固体聚合物电解质界面性质及其在高电位下性能的必要性。