Suppr超能文献

具有超离子锂传输性能的聚合物两性离子固体电解质的设计

Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport.

作者信息

Jones Seamus D, Nguyen Howie, Richardson Peter M, Chen Yan-Qiao, Wyckoff Kira E, Hawker Craig J, Clément Raphaële J, Fredrickson Glenn H, Segalman Rachel A

机构信息

Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93110-5080, United States.

Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93110-5080, United States.

出版信息

ACS Cent Sci. 2022 Feb 23;8(2):169-175. doi: 10.1021/acscentsci.1c01260. Epub 2022 Jan 4.

Abstract

Progress toward durable and energy-dense lithium-ion batteries has been hindered by instabilities at electrolyte-electrode interfaces, leading to poor cycling stability, and by safety concerns associated with energy-dense lithium metal anodes. Solid polymeric electrolytes (SPEs) can help mitigate these issues; however, the SPE conductivity is limited by sluggish polymer segmental dynamics. We overcome this limitation via zwitterionic SPEs that self-assemble into superionically conductive domains, permitting decoupling of ion motion and polymer segmental rearrangement. Although crystalline domains are conventionally detrimental to ion conduction in SPEs, we demonstrate that semicrystalline polymer electrolytes with labile ion-ion interactions and tailored ion sizes exhibit excellent lithium conductivity (1.6 mS/cm) and selectivity ( ≈ 0.6-0.8). This new design paradigm for SPEs allows for simultaneous optimization of previously orthogonal properties, including conductivity, Li selectivity, mechanics, and processability.

摘要

电解质-电极界面的不稳定性导致循环稳定性差,以及与能量密集型锂金属负极相关的安全问题,阻碍了耐用且能量密集型锂离子电池的发展。固体聚合物电解质(SPE)有助于缓解这些问题;然而,SPE的导电性受到聚合物链段动力学迟缓的限制。我们通过两性离子SPE克服了这一限制,两性离子SPE自组装成超离子导电域,使离子运动和聚合物链段重排能够解耦。尽管晶域通常对SPE中的离子传导不利,但我们证明,具有不稳定离子-离子相互作用和定制离子尺寸的半结晶聚合物电解质表现出优异的锂导电性(1.6 mS/cm)和选择性(≈0.6-0.8)。这种新的SPE设计范式允许同时优化以前相互正交的性能,包括导电性、锂选择性、机械性能和可加工性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0033/8874728/abcd3c9cf063/oc1c01260_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验