Zhang Nian, Trépout Sylvain, Chen Hui, Li Min-Hui
Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France.
Institut Curie, Inserm US43, CNRS UMS2016, Université Paris-Saclay, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France.
J Am Chem Soc. 2023 Jan 11;145(1):288-299. doi: 10.1021/jacs.2c09933. Epub 2022 Dec 23.
Biocatalytic transformation has attracted increasing attention in the green synthesis of chemicals due to the diversity of enzymes, their high catalytic activities and specificities, and environmentally benign conditions. Most redox enzymes in nature are dependent on nicotinamide cofactors like β-nicotinamide adenine dinucleotide (NAD)/reduced nicotinamide adenine dinucleotide (NADH). The use of solar energy, especially visible light, in the regeneration of cofactors through the combination of photocatalysis and biocatalysis provides an extraordinary opportunity to make complete green processes. However, the combination of photocatalysts and enzymes has been challenged by the rapid degradation and deactivation of the enzymatic material by photogenerated reactive oxygen species (ROS). Here, we design core-shell structured polymer micelles and vesicles with aggregation-induced emission (AIE) as visible-light-mediated photocatalysts for highly stable and recyclable photobiocatalysis under aerobic conditions. NAD from NADH can be efficiently regenerated by the photoactive hydrophobic core of polymer micelles and the hydrophobic membrane of polymer vesicles, while the enzymatic material (glucose 1-dehydrogenase) is screened from the attack of photogenerated ROS by the hydrophilic surface layer of polymer colloids. After at least 10 regeneration cycles, the enzyme keeps its active state; meanwhile, polymer micelles and vesicles maintain their photocatalytic activity. These polymer colloids show the potential to be developed for the implementation of industrially relevant photobiocatalytic systems.
由于酶的多样性、高催化活性和特异性以及环境友好的条件,生物催化转化在化学品的绿色合成中受到越来越多的关注。自然界中的大多数氧化还原酶都依赖于烟酰胺辅因子,如β-烟酰胺腺嘌呤二核苷酸(NAD)/还原型烟酰胺腺嘌呤二核苷酸(NADH)。通过光催化和生物催化相结合利用太阳能,特别是可见光,在辅因子再生中提供了一个实现完全绿色过程的绝佳机会。然而,光催化剂和酶的结合受到光生活性氧(ROS)对酶材料的快速降解和失活的挑战。在此,我们设计了具有聚集诱导发光(AIE)的核壳结构聚合物胶束和囊泡,作为可见光介导的光催化剂,用于在有氧条件下进行高度稳定和可循环的光生物催化。聚合物胶束的光活性疏水核和聚合物囊泡的疏水膜可以有效地将NADH中的NAD再生,而聚合物胶体的亲水性表面层可以保护酶材料(葡萄糖1-脱氢酶)免受光生ROS的攻击。经过至少10次再生循环后,酶保持其活性状态;同时,聚合物胶束和囊泡保持其光催化活性。这些聚合物胶体显示出开发用于实施工业相关光生物催化系统的潜力。