Suppr超能文献

电子能量损失谱数据库综合及基于深度学习神经网络的芯损失边缘识别自动化。

Electron energy loss spectroscopy database synthesis and automation of core-loss edge recognition by deep-learning neural networks.

机构信息

Department of Physics, University of California, Irvine, CA, 92617, USA.

出版信息

Sci Rep. 2022 Dec 23;12(1):22183. doi: 10.1038/s41598-022-25870-3.

Abstract

The ionization edges encoded in the electron energy loss spectroscopy (EELS) spectra enable advanced material analysis including composition analyses and elemental quantifications. The development of the parallel EELS instrument and fast, sensitive detectors have greatly improved the acquisition speed of EELS spectra. However, the traditional way of core-loss edge recognition is experience based and human labor dependent, which limits the processing speed. So far, the low signal-noise ratio and the low jump ratio of the core-loss edges on the raw EELS spectra have been challenging for the automation of edge recognition. In this work, a convolutional-bidirectional long short-term memory neural network (CNN-BiLSTM) is proposed to automate the detection and elemental identification of core-loss edges from raw spectra. An EELS spectral database is synthesized by using our forward model to assist in the training and validation of the neural network. To make the synthesized spectra resemble the real spectra, we collected a large library of experimentally acquired EELS core edges. In synthesize the training library, the edges are modeled by fitting the multi-Gaussian model to the real edges from experiments, and the noise and instrumental imperfectness are simulated and added. The well-trained CNN-BiLSTM network is tested against both the simulated spectra and real spectra collected from experiments. The high accuracy of the network, 94.9%, proves that, without complicated preprocessing of the raw spectra, the proposed CNN-BiLSTM network achieves the automation of core-loss edge recognition for EELS spectra with high accuracy.

摘要

电子能量损失谱(EELS)谱中的电离边缘可实现先进的材料分析,包括成分分析和元素定量。并行 EELS 仪器和快速、灵敏探测器的发展极大地提高了 EELS 谱的采集速度。然而,传统的核心损耗边缘识别方法是基于经验和人工劳动的,这限制了处理速度。到目前为止,原始 EELS 谱中核心损耗边缘的低信噪比和低跃变比一直是边缘识别自动化的挑战。在这项工作中,提出了一种卷积双向长短时记忆神经网络(CNN-BiLSTM),用于自动从原始光谱中检测和识别核心损耗边缘。通过使用正向模型合成 EELS 光谱数据库,以辅助神经网络的训练和验证。为了使合成的光谱与真实光谱相似,我们收集了大量实验获得的 EELS 核心边缘的库。在合成训练库时,通过将多高斯模型拟合到实验中的真实边缘来对边缘进行建模,并模拟和添加噪声和仪器不完美性。训练有素的 CNN-BiLSTM 网络在模拟光谱和从实验中收集的真实光谱上进行了测试。该网络的高精度,94.9%,证明了在不对原始光谱进行复杂预处理的情况下,所提出的 CNN-BiLSTM 网络能够实现 EELS 光谱的核心损耗边缘识别自动化,具有很高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1332/9789080/0bfb3a802b2c/41598_2022_25870_Fig1_HTML.jpg

相似文献

9
Emotion Analysis Model of Microblog Comment Text Based on CNN-BiLSTM.基于 CNN-BiLSTM 的微博评论情感分析模型。
Comput Intell Neurosci. 2022 Apr 30;2022:1669569. doi: 10.1155/2022/1669569. eCollection 2022.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验