Suppr超能文献

使用人工神经网络对三级新冠疫情警报对空气污染指标的影响进行分析。

Chang impact analysis of level 3 COVID-19 alert on air pollution indicators using artificial neural network.

作者信息

Lin Guan-Yu, Chen Wei-Yea, Chieh Shao-Heng, Yang Yi-Tsung

机构信息

Department of Environmental Science and Engineering, Tunghai University, Taichung 407302, Taiwan.

出版信息

Ecol Inform. 2022 Jul;69:101674. doi: 10.1016/j.ecoinf.2022.101674. Epub 2022 May 14.

Abstract

In this study, mean monthly and diurnal variations in fine particulate matters (PM), nitrate, sulfate, and gaseous precursors were investigated during the Level 3 COVID-19 alert from May 19 to July 27 in 2021. For comparison, the historical data during the identical period in 2019 and 2020 were also provided to determine the effect of the Level 3 COVID-19 alert on aerosols and gaseous pollutants concentrations in Taichung City. A machine learning model using the artificial neural network technique coupled with a kinetic model was applied to predict NO, O, nitrate (NO ), and sulfate (SO ) to investigate potential emission sources and chemical reaction mechanism. D during the Level 3 COVID-19 alert, a decrease in NO concentration due to a decrease in traffic flow under the NO-saturated regime was observed to enhance the secondary NO and O formation. The present models were shown to predict 80.1, 77.0, 72.6, and 67.2% concentrations of NO, O, NO , and SO , respectively, which could help decision-makers for pollutant emissions reduction policies development and air pollution control strategies. It is recommended that more long-term datasets, including water soluble inorganic salts (WIS), precursors including OH radicals, NH, HNO, and HSO, be provided by regulatory air quality monitoring stations to further improve the prediction model accuracy.

摘要

在本研究中,调查了2021年5月19日至7月27日三级新冠肺炎警戒期间细颗粒物(PM)、硝酸盐、硫酸盐和气态前体的月均值和日变化。为作比较,还提供了2019年和2020年同期的历史数据,以确定三级新冠肺炎警戒对台中市气溶胶和气态污染物浓度的影响。应用一种结合人工神经网络技术和动力学模型的机器学习模型来预测一氧化氮(NO)、臭氧(O₃)、硝酸盐(NO₃⁻)和硫酸盐(SO₄²⁻),以研究潜在排放源和化学反应机制。在三级新冠肺炎警戒期间,观察到在NO饱和状态下,由于交通流量减少导致NO浓度下降,从而增强了二次NO₃⁻和O₃的形成。结果表明,当前模型对NO、O₃、NO₃⁻和SO₄²⁻浓度的预测准确率分别为80.1%、77.0%、72.6%和67.2%,这有助于决策者制定污染物减排政策和空气污染控制策略。建议环境空气质量监测站提供更多长期数据集,包括水溶性无机盐(WIS)、包括羟基自由基(OH)、氨(NH₃)、硝酸(HNO₃)和硫酸(H₂SO₄)在内的前体物质,以进一步提高预测模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8779/9760264/c5789d5cf5d4/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验