Suppr超能文献

多不饱和脂肪酸对骨密度和骨折的因果效应。

Causal effect of polyunsaturated fatty acids on bone mineral density and fracture.

作者信息

Tao Sha-Sha, Wang Peng, Wang Xin-Yi, Yin Kang-Jia, Yang Xiao-Ke, Wang Zhi-Xin, Wang De-Guang, Pan Hai-Feng

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.

出版信息

Front Nutr. 2022 Dec 8;9:1014847. doi: 10.3389/fnut.2022.1014847. eCollection 2022.

Abstract

BACKGROUND

Polyunsaturated fatty acids (PUFAs) are closely related to osteoporosis. To test their causal relationship, we conducted a Mendelian randomization (MR) analysis.

METHODS

We analyzed the causal relationship between four PUFAs measures, n-3 PUFAs (n-3), n-6 PUFAs (n-6), the ratio of n-3 PUFAs to total fatty acids (n-3 pct), and the ratio of n-6 PUFAs to n-3 PUFAs (n-6 to n-3), and five measures of osteoporosis, including estimated bone mineral density (eBMD), forearm (FA) BMD, femoral neck (FN) BMD, lumbar spine (LS) BMD, and fracture, using two-sample MR analysis. In order to verify the direct effect between PUFAs and BMD, we chose interleukin-6 (IL-6), tumor necrosis factor-β (TNF-β), and bone morphogenetic proteins 7 (BMP-7), three markers or cytokines strongly related to BMD, as possible confounding factors, and analyzed the possible causal relationships between them and PUFAs or BMD by MR. Inverse variance weighting (IVW), MR-Egger, weighted and weighted median were conducted. MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and MR-Egger regression methods were used to evaluate the potential pleiotropy of instrumental variables (IVs) and outliers were identified by MR-PRESSO. Cochran's Q statistic was used to detect the heterogeneity among IVs. Leave-one-out sensitivity analysis was used to find SNPs that have a significant impact on the results. All results were corrected by the Bonferroni correction.

RESULTS

The IVW results showed that n-3 PUFAs (OR = 1.030, 95% CI: 1.013, 1.047, = 0.001) and n-6 PUFAs (OR = 1.053, 95% CI: 1.034, 1.072, < 0.001) were positively correlated with eBMD, while n-6 to n-3 (OR = 0.947, 95% CI: 0.924, 0.970, < 0.001) were negatively correlated with eBMD. These casual relationships still existed after Bonferroni correction. There were positive effects of n-3 PUFAs on FA BMD (OR = 1.090, 95% CI: 1.011, 1.176, = 0.025) and LS BMD (OR = 1.056, 95% CI: 1.011, 1.104, = 0.014), n-3 pct on eBMD (OR = 1.028, 95% CI: 1.002, 1.055, = 0.035) and FA BMD (OR = 1.090, 95% CI: 1.011, 1.174, = 0.025), n-6 to n-3 on LS BMD (OR = 1.071, 95% CI: 1.021, 1.124, = 0.005); negative effects of n-3 pct on fracture (OR = 0.953, 95% CI: 0.918, 0.988, = 0.009) and n-6 to n-3 on FA BMD (OR = 0.910, 95% CI: 0.837, 0.988, = 0.025). However, these causal effects all disappeared after Bonferroni correction (all > 0.0025). None of IL-6, TNF-β, and BMP-7 had a causal effect on PUFA and BMD simultaneously (all > 0.05).

CONCLUSION

Evidence from this MR study supports the genetically predicted causal effects of n-3, n-6, n-3 pct, and n-6 to n-3 on eBMD. In addition, n-3 not only associate with FA BMD and LS BMD through its own level and n-6 to n-3, but also link to fracture through n-3 pct.

摘要

背景

多不饱和脂肪酸(PUFAs)与骨质疏松症密切相关。为了检验它们之间的因果关系,我们进行了孟德尔随机化(MR)分析。

方法

我们使用两样本MR分析方法,分析了四种PUFAs指标,即n-3多不饱和脂肪酸(n-3)、n-6多不饱和脂肪酸(n-6)、n-3多不饱和脂肪酸与总脂肪酸的比例(n-3 pct)以及n-6多不饱和脂肪酸与n-3多不饱和脂肪酸的比例(n-6与n-3),与五种骨质疏松症指标之间的因果关系,这五种骨质疏松症指标包括估计骨矿物质密度(eBMD)、前臂(FA)骨密度、股骨颈(FN)骨密度、腰椎(LS)骨密度和骨折。为了验证PUFAs与骨密度之间的直接效应,我们选择了白细胞介素-6(IL-6)、肿瘤坏死因子-β(TNF-β)和骨形态发生蛋白7(BMP-7)这三种与骨密度密切相关的标志物或细胞因子作为可能的混杂因素,并通过MR分析它们与PUFAs或骨密度之间可能的因果关系。采用逆方差加权(IVW)、MR-Egger、加权和加权中位数方法进行分析。使用MR多效性残差和异常值(MR-PRESSO)以及MR-Egger回归方法评估工具变量(IVs)的潜在多效性,并通过MR-PRESSO识别异常值。使用Cochran's Q统计量检测IVs之间的异质性。采用留一法敏感性分析来寻找对结果有显著影响的单核苷酸多态性(SNPs)。所有结果均经Bonferroni校正。

结果

IVW结果显示,n-3多不饱和脂肪酸(OR = 1.030,95%CI:1.013,1.047,P = 0.001)和n-6多不饱和脂肪酸(OR = 1.053,95%CI:1.034,1.072,P < 0.001)与eBMD呈正相关,而n-6与n-3(OR = 0.947,95%CI:0.924,0.97�,P < 0.001)与eBMD呈负相关。经Bonferroni校正后,这些因果关系仍然存在。n-3多不饱和脂肪酸对FA骨密度(OR = 1.090,95%CI:1.011,1.176,P = 0.025)和LS骨密度(OR = 1.056,95%CI:1.011,1.104,P = 0.014)有正向影响,n-3 pct对eBMD(OR = 1.028,95%CI:1.002,1.055,P = 0.035)和FA骨密度(OR = 🌰,95%CI:1.011,1.174,P = 0.025)有正向影响,n-6与n-3对LS骨密度(OR = 1.071,95%CI:1.021,1.124,P = 0.005)有正向影响;n-3 pct对骨折有负向影响(OR = 0.953,95%CI:0.918,0.988,P = 0.009),n-6与n-3对FA骨密度有负向影响(OR = 0.910,95%CI:0.837,0.988,P = 0.025)。然而,经Bonferroni校正后,这些因果效应均消失(所有P > 0.。IL-6、TNF-β和BMP-7均未对PUFA和骨密度同时产生因果效应(所有P > 0.05)。

结论

这项MR研究的证据支持了n-3、n-6、n-3 pct和n-6与n-3对eBMD的基因预测因果效应。此外,n-3不仅通过其自身水平和n-6与n-3与FA骨密度和LS骨密度相关,还通过n-3 pct与骨折相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33e5/9772990/e883c3e2bd96/fnut-09-1014847-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验