Suppr超能文献

深度学习改进 SWATH-MS 分析。

Improving SWATH-MS analysis by deep-learning.

机构信息

Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.

Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Germany.

出版信息

Proteomics. 2023 May;23(9):e2200179. doi: 10.1002/pmic.202200179. Epub 2023 Jan 3.

Abstract

Data-independent acquisition (DIA) of tandem mass spectrometry spectra has emerged as a promising technology to improve coverage and quantification of proteins in complex mixtures. The success of DIA experiments is dependent on the quality of spectral libraries used for data base searching. Frequently, these libraries need to be generated by labor and time intensive data dependent acquisition (DDA) experiments. Recently, several algorithms have been published that allow the generation of theoretical libraries by an efficient prediction of retention time and intensity of the fragment ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented speed, but the fragmentation spectra suffer from a lower quality than data acquired on Orbitrap instruments. To reliably generate theoretical libraries that can be used in SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH), to improve the sensitivity and specificity of data generated by Q-TOF mass spectrometers. The theoretical library built by dpSWATH allowed us to increase the identification rate of proteins compared to traditional or library-free methods. Based on our analysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS measurements than other algorithms based on Orbitrap data.

摘要

数据非依赖性采集(DIA)串联质谱技术已成为一种提高复杂混合物中蛋白质覆盖率和定量分析的有前途的技术。DIA 实验的成功取决于用于数据库搜索的光谱库的质量。这些库通常需要通过劳动密集型和时间密集型的数据依赖性采集(DDA)实验来生成。最近,已经发表了几种算法,允许通过对碎片离子的保留时间和强度进行有效的预测来生成理论库。顺序窗口采集所有理论碎片离子谱质谱(SWATH-MS)是一种 DIA 方法,可以以前所未有的速度应用,但与轨道阱仪器采集的数据相比,其碎片化谱的质量较低。为了可靠地生成可用于 SWATH 实验的理论库,我们开发了用于 SWATH 分析的深度学习(dpSWATH),以提高 Q-TOF 质谱仪生成的数据的灵敏度和特异性。与传统或无库方法相比,dpSWATH 构建的理论库可提高蛋白质的鉴定率。基于我们的分析,我们得出结论,dpSWATH 是一种优于基于轨道阱数据的其他算法的 SWATH-MS 测量预测框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验