Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
ACS Appl Mater Interfaces. 2023 Jan 11;15(1):2134-2146. doi: 10.1021/acsami.2c18397. Epub 2022 Dec 26.
Polyurethane elastomers with mechanical robustness, tear resistance, and healing efficiency hold great potential in wearable sensors and soft robots. However, achieving excellent mechanical properties and healable capability simultaneously remains highly desirable but exclusive. Herein, we propose a straightforward procedure for double modification of poly(urethane-urea) (PUU) via thiolactone chemistry, and two different dynamic cross-linking bonds (disulfide linkages and Zn/imidazole coordination) are successively incorporated into the side chain of PUU, producing double cross-linking elastomers (PUU-I/Zn-S). The synergy between disulfide linkages and Zn/imidazole coordination forms a robust and dynamic network, endowing PUU-I/Zn-S with excellent mechanical and healing properties. The tensile stress, elongation at break, and toughness of the resultant elastomer can reach 44.06 MPa, 1000%, and 181.93 MJ m, respectively. Meanwhile, PUU-I/Zn-S exhibits outstanding tearing resistance with a tearing energy of 42.1 kJ m. The PUU-I/Zn-S can restore its mechanical robustness after self-healing at room temperature (25 ± 2 °C) or 60 °C and even maintain 91% of its original tensile strength after reprocessing two times. Additionally, PUU-I/Zn-S-based strain sensors are fabricated by introducing conductive nanofillers and demonstrate remarkable sensing capability to diverse human body motions. This work demonstrates a simple and feasible method for the postfunctionalization and enhancement of polyurethane and provides some insights into reconciling the traditional contradictory properties of mechanical robustness and healing efficiency.
具有机械鲁棒性、抗撕裂性和高效修复能力的聚氨酯弹性体在可穿戴传感器和软体机器人领域具有巨大的应用潜力。然而,同时实现优异的机械性能和可修复能力仍然是人们所追求的,但目前这两者通常不可兼得。在此,我们提出了一种通过硫内酯化学对聚(尿烷-脲)(PUU)进行双重改性的简单方法,通过该方法可在 PUU 的侧链中成功引入两种不同的动态交联键(二硫键和 Zn/咪唑配位键),制备得到双交联弹性体(PUU-I/Zn-S)。二硫键和 Zn/咪唑配位键之间的协同作用形成了一个坚固且动态的网络,赋予 PUU-I/Zn-S 优异的机械性能和修复性能。所得弹性体的拉伸应力、断裂伸长率和韧性分别可达 44.06 MPa、1000%和 181.93 MJ m。同时,PUU-I/Zn-S 还表现出出色的抗撕裂性能,撕裂能可达 42.1 kJ m。室温(25 ± 2 °C)或 60 °C 下自修复后,PUU-I/Zn-S 可恢复其机械鲁棒性,甚至在重新加工两次后仍能保持其原始拉伸强度的 91%。此外,通过引入导电纳米填料制备了基于 PUU-I/Zn-S 的应变传感器,该传感器对各种人体运动具有优异的传感性能。这项工作展示了一种对聚氨酯进行后功能化和增强的简单且可行的方法,为协调机械鲁棒性和修复效率这两个传统上相互矛盾的性能提供了一些思路。