Institute for Energy Research, School of Materials Science and Engineering, School of Energy and Power Engineering, Jiangsu University, 212013 Zhenjiang, PR China.
Institute for Energy Research, School of Materials Science and Engineering, School of Energy and Power Engineering, Jiangsu University, 212013 Zhenjiang, PR China.
J Colloid Interface Sci. 2023 Mar 15;634:1005-1013. doi: 10.1016/j.jcis.2022.12.063. Epub 2022 Dec 16.
The direct conversion of CO into reusable CH fuel by solar energy can effectively solve the problems of energy crisis and carbon emissions. However, the challenge of photocatalytic CO reduction to produce CH is still low conversion efficiency and poor selectivity. Here, surface brominated carbon nitride (named CNBr) is fabricated for stable and efficient photocatalytic CO reduction to produce CH with a rate of 16.68 μmol h g (70.27 % selectivity). Br atom in CNBr can substitute the N atom in the tri-s-triazine unites, which promotes local charge separation, narrows band gap and deepens the conduction band of CNBr. Benefiting from Br as active sites, CO can be enriched on the catalyst surface, and localized photogenerated electrons can activate the adsorbed CO to form CH through subsequent hydrogenation. Density functional theory results suggest that Br doping can effectively reduce the energy barrier of the rate-limiting step, accelerate the reaction, and induce the formation of *CHO, thereby improving the selectivity of CH. This work reveals that surface modification can simultaneously increase the activation site of CO adsorption activation, enhance light absorption and accelerate charge, laying a solid foundation for the future design of carbon nitride based photocatalyst with high performance.
通过太阳能将 CO 直接转化为可重复使用的 CH 燃料,可以有效解决能源危机和碳排放问题。然而,光催化 CO 还原生产 CH 的挑战仍然是低转化效率和差的选择性。在这里,制备了表面溴化碳氮化物(命名为 CNBr),用于稳定高效的光催化 CO 还原生产 CH,其产率为 16.68 μmol h g(70.27%选择性)。CNBr 中的 Br 原子可以取代三嗪单元中的 N 原子,这促进了局部电荷分离,缩小了带隙并加深了 CNBr 的导带。由于 Br 作为活性位点,CO 可以在催化剂表面富集,局部光生电子可以通过随后的加氢作用激活吸附的 CO 形成 CH。密度泛函理论结果表明,Br 掺杂可以有效地降低限速步骤的能量势垒,加速反应,并诱导 *CHO 的形成,从而提高 CH 的选择性。这项工作揭示了表面修饰可以同时增加 CO 吸附激活的活性位点,增强光吸收并加速电荷转移,为未来设计具有高性能的基于碳氮化物的光催化剂奠定了坚实的基础。