Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University , Wuhan 430062, P. R. China.
Engineering Technology Research Center of Henan Province for Solar Catalysis, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University , Nanyang 473061, P. R. China.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):4001-4009. doi: 10.1021/acsami.7b17503. Epub 2018 Jan 22.
Phosphorus-doped graphitic carbon nitrides (P-g-CN) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption. However, their photocatalytic performances on CO reduction have gained little attention. In this work, phosphorus-doped g-CN nanotubes are synthesized through the one-step thermal reaction of melamine and sodium hypophosphite monohydrate (NaHPO·HO). The phosphine gas generated from the thermal decomposition of NaHPO·HO induces the formation of P-g-CN nanotubes from g-CN nanosheets, leads to an enlarged BET surface area and a unique mesoporous structure, and creates an amino-rich surface. The interstitial doping phosphorus also down shifts the conduction and valence band positions and narrows the band gap of g-CN. The photocatalytic activities are dramatically enhanced in the reduction both of CO to produce CO and CH and of water to produce H because of the efficient suppression of the recombination of electrons and holes. The CO adsorption capacity is improved to 3.14 times, and the production of CO and CH from CO increases to 3.10 and 13.92 times that on g-CN, respectively. The total evolution ratio of CO/CH dramatically decreases to 1.30 from 6.02 for g-CN, indicating a higher selectivity of CH product on P-g-CN, which is likely ascribed to the unique nanotubes structure and amino-rich surface.
磷掺杂石墨相氮化碳(P-g-CN)由于快速电荷载流子转移和增加的光吸收,最近作为可见光光催化剂在制氢和清洁环境应用中很有前景。然而,它们在 CO 还原方面的光催化性能却很少受到关注。在这项工作中,通过三聚氰胺和次磷酸钠一水合物(NaHPO·HO)的一步热反应合成了磷掺杂 g-CN 纳米管。NaHPO·HO 热分解产生的磷烷气体诱导 g-CN 纳米片形成 P-g-CN 纳米管,导致 BET 表面积增大和独特的介孔结构,并产生富含氨基的表面。间隙掺杂磷也使 g-CN 的导带和价带位置向下移动,缩小了带隙。由于电子和空穴的复合得到有效抑制,CO 还原为 CO 和 CH 以及水还原为 H 的光催化活性显著增强。CO 吸附容量提高到 g-CN 的 3.14 倍,CO 生成 CO 和 CH 的产量分别提高到 g-CN 的 3.10 倍和 13.92 倍。CO/CH 的总演化比从 g-CN 的 6.02 急剧下降到 1.30,表明 P-g-CN 上 CH 产物的选择性更高,这可能归因于独特的纳米管结构和富含氨基的表面。