Suppr超能文献

新樟疫霉引起中国茶树灰霉病的首次报道

First Report of Neopestalotiopsis piceana Causing Gray Blight in Camellia sinensis L. in China.

作者信息

Wang Qiao Mei, Yang Ruijuan, Yang Yanmei, Lv Jie, Peng Wenshu, Yan Liang, Hu Xianqi

机构信息

puerpuer, China, 665000;

kunming, China;

出版信息

Plant Dis. 2022 Dec 26. doi: 10.1094/PDIS-07-22-1721-PDN.

Abstract

Tea plants (Camellia sinensis L.) are an important cash crop and are cultivated worldwide for their commercial value (Palanisamy et al. 2014). Tea gray blight is an important tea plant disease as it can cause a decline in tea quality and reduce yields by 20-30% (Sanjay et al. 2008). In August 2018, a disease survey was conducted on 400 ha of organic tea plantations in the Pu'er area of Yunnan Province (22.48° N, 100.58° E). The survey found that widespread disease was causing damage to 40% of the tea plantations and that the most seriously affected tea variety was Yunkang No. 10, which had an average disease incidence of 30-35%. The affected leaves grew small yellow-green spots on their tips or margins in the early stage that expanded into round or irregular brown spots with distinct concentric whorls and black conidial disks arranged in whorls when the humidity was high (Fig. 1A-B), which is consistent with tea gray blight disease (Zheng et al. 2021). Twenty-four diseased leaf samples were collected from four different tea plantations and transported to the Pu-Erh Tea Research Laboratory. Leaves with disease spots were cut into 4 mm ×4 mm square pieces, surface-sterilized with 75% alcohol for 1 min, disinfected with 1% sodium hypochlorite for 3 min, and washed thrice with sterile water. The tissue pieces were placed on potato dextrose agar (PDA) plates containing 100 µg ml-1 of chloramphenicol (Wang et al. 2021). After 3 d of culturing in the dark at 28 C, twenty pure cultures with similar morphology were obtained, and two representative isolates were selected and transferred into new PDA media. After 7 d, circular fungal colonies with dense aerial mycelium produced black, wet spore masses that grew on the PDA media (Fig. 1C-D). The conidia were spindle-shaped with four septa, measuring 25.0 (21.0-26.0) × 6.0 (4.5-7.0) µm (n=15). The conidia had three median cells, two of which were dark brown in color with unclear separations, with a single basal hyaline appendage 3.8 (3.5-4.5) µm (n=30) in length and 2-3 apical hyaline appendages 31 (27-35) µm in length (n=30) (Fig. 1E), similar to the conidial characteristics of Neopestalotiopsis piceana (Maharachchikumbura et al. 2014). Two isolates were selected for DNA extraction. The internal transcribed spacer (ITS) region, partial translation elongation factor 1-alpha (tef1-α) gene, and partial β-tubulin (tub2) gene were amplified using the ITS1F-ITS4 primer set (White et al 1990), the EF-1α-F and EF-1α-R primer sets (Li et al. 2018), and the tub1 and tub2 primers, respectively (Chauhan et al. 2007). The ITS (OP535632 to OP535632), tef1-α (OP589285,OP589287), and tub2 (OP589286,OP589288) sequences were submitted to NCBI GenBank. Basic Local Alignment Search Tool analysis demonstrated that these sequences were 100% similar to those of N. piceana isolates available in GenBank. The sequences were compared using the Mafft software package, and sequences with the same ID were concatenated using scripts. A maximum likelihood phylogenetic tree was constructed using the MEGA (ver. 5.1) software package based on the concatenated sequences (ITS, tef1-α, and tub2). Phylogenetic analysis revealed that C-5 and B-3 showed 95% bootstrap support with N. piceana isolates in references (Fig. 2). According to the morphology and molecular characterization, C-5 and B-3 were identified as N. piceana. Pathogenicity tests on these two isolates were conducted using 36 healthy tea plants. The leaves were scratched slightly with sterile toothpick tips, after which pathogen cakes (6 mm diameter) were placed on the wounds with the mycelial side facing down and covered with sterile absorbent cotton to maintain a moist environment. Control leaves were wounded and covered with sterile PDA plugs (three replicates per treatment, three plants per replicate). Seven days later, the inoculated leaves exhibited similar symptoms observed under natural conditions, whereas the control leaves exhibited no symptoms. The same isolates as the introduced strains were isolated from the diseased tea leaves, completing Koch's postulates. To our knowledge, this is the first report of N. piceana causing gray blight on tea leaves in China. These results provide valuable information for the prevention and management of gray blight on tea leaves. References: Chauhan, J. B., et al. 2007. Indian J Biotechnol. 6: 404-406 Li, D. X., et al. 2018. J. Trop. Crops. 39:1827-1833. Maharachchikumbura, S. N., et al. 2014. Stud. Mycol. 79:121-186. Palanisamy, S., et al. 2014. Appl. Biochem. Biotechnol. 172:216-223. Sanjay, R., et al. 2008. Crop Protect. 27(3-5): 689-694. Wang, Q. M., et al. 2021. Front. Microbiol. 12:774438. White, T. J., et al. 1990. Academic, San Diego. 315-322 Zheng, S., et al. 2021. Plant Dis. 105:3723-3726.

摘要

茶树(Camellia sinensis L.)是一种重要的经济作物,因其商业价值而在全球范围内种植(Palanisamy等人,2014年)。茶灰枯病是一种重要的茶树病害,它会导致茶叶品质下降,产量降低20%-30%(Sanjay等人,2008年)。2018年8月,对云南省普洱地区(北纬22.48°,东经100.58°)400公顷的有机茶园进行了病害调查。调查发现,广泛发生的病害对40%的茶园造成了损害,受影响最严重的茶树品种是云抗10号,平均发病率为30%-35%。受影响的叶片在早期其尖端或边缘会出现小黄绿色斑点,当湿度较高时,这些斑点会扩大成圆形或不规则的褐色斑点,带有明显的同心轮纹,并且有呈轮状排列的黑色分生孢子盘(图1A-B),这与茶灰枯病相符(Zheng等人,2021年)。从四个不同的茶园采集了24个患病叶片样本,并运至普洱茶研究实验室。将带有病斑的叶片切成4毫米×4毫米的方块,用75%酒精进行表面消毒1分钟,用1%次氯酸钠消毒3分钟,并用无菌水冲洗三次。将组织块放置在含有100微克/毫升氯霉素的马铃薯葡萄糖琼脂(PDA)平板上(Wang等人,2021年)。在28℃黑暗条件下培养3天后,获得了20个形态相似的纯培养物,并选择了两个代表性分离株转移到新的PDA培养基中。7天后,在PDA培养基上产生了具有致密气生菌丝体的圆形真菌菌落,形成了黑色、湿润的孢子团(图1C-D)。分生孢子呈纺锤形,有四个隔膜,大小为25.0(21.0-26.0)×6.0(4.5-7.0)微米(n = 15)。分生孢子有三个中间细胞,其中两个颜色深褐色,分界不明显,有一个基部透明附属物,长度为3.8(3.5-4.5)微米(n = 30),有2-3个顶端透明附属物,长度为31(27-35)微米(n = 30)(图1E),类似于云杉新拟盘多毛孢(Neopestalotiopsis piceana)的分生孢子特征(Maharachchikumbura等人,2014年)。选择两个分离株进行DNA提取。使用ITS1F-ITS4引物对(White等人,1990年)、EF-1α-F和EF-1α-R引物对(Li等人,2018年)以及tub1和tub2引物分别扩增内部转录间隔区(ITS)区域、部分翻译延伸因子1-α(tef1-α)基因和部分β-微管蛋白(tub2)基因(Chauhan等人,2007年)。ITS(OP535632至OP�35632)、tef1-α(OP589285、OP589287)和tub2(OP589286、OP589288)序列已提交至NCBI GenBank。基本局部比对搜索工具分析表明,这些序列与GenBank中可用的云杉新拟盘多毛孢分离株的序列100%相似。使用Mafft软件包对序列进行比较,并使用脚本将具有相同ID的序列连接起来。基于连接后的序列(ITS、tef1-α和tub2),使用MEGA(版本5.1)软件包构建了最大似然系统发育树。系统发育分析表明,C-5和B-3与参考文献中的云杉新拟盘多毛孢分离株有95%的自展支持率(图2)。根据形态学和分子特征,C-5和B-3被鉴定为云杉新拟盘多毛孢。使用36株健康茶树对这两个分离株进行致病性测试。用无菌牙签尖端轻轻划伤叶片,然后将病原菌饼(直径6毫米)菌丝面朝下放置在伤口上,并用无菌脱脂棉覆盖以保持湿润环境。对照叶片进行划伤并覆盖无菌PDA塞子(每个处理三个重复,每个重复三株植物)。7天后,接种的叶片出现了在自然条件下观察到的类似症状,而对照叶片没有出现症状。从患病茶叶中分离出了与接种菌株相同的分离株,完成了柯赫氏法则验证。据我们所知,这是中国首次报道云杉新拟盘多毛孢引起茶叶灰枯病。这些结果为茶叶灰枯病预防和管理提供了有价值的信息。参考文献:Chauhan, J. B.,等人,2007年。Indian J Biotechnol. 6: 404-406;Li, D. X.,等人,2018年。J. Trop. Crops. 39:1827-1833;Maharachchikumbura, S. N.,等人,2014年。Stud. Mycol. 79:121-186;Palanisamy, S.,等人,2014年。Appl. Biochem. Biotechnol. 172:216-223;Sanjay, R.,等人,2008年。Crop Protect. 27(3-5): 689-694;Wang, Q. M.,等人,2021年。Front. Microbiol. 12:774438;White, T. J.,等人,1990年。Academic, San Diego. 315-322;Zheng, S.,等人,2021年。Plant Dis. 105:3723-3726

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验