Fraboulet Kilian, Heinzelmann Sarah, Bonetti Pietro M, Al-Eryani Aiman, Vilardi Demetrio, Toschi Alessandro, Andergassen Sabine
Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany.
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
Eur Phys J B. 2022;95(12):202. doi: 10.1140/epjb/s10051-022-00438-2. Epub 2022 Dec 22.
We illustrate the algorithmic advantages of the recently introduced single-boson exchange (SBE) formulation for the one-loop functional renormalization group (fRG), by applying it to the two-dimensional Hubbard model on a square lattice. We present a detailed analysis of the fermion-boson Yukawa couplings and of the corresponding physical susceptibilities by studying their evolution with temperature and interaction strength, both at half filling and finite doping. The comparison with the conventional fermionic fRG decomposition shows that the rest functions of the SBE algorithm, which describe correlation effects beyond the SBE processes, play a negligible role in the weak-coupling regime above the pseudo-critical temperature, in contrast to the rest functions of the conventional fRG. Remarkably, they remain finite also at the pseudo-critical transition, whereas the corresponding rest functions of the conventional fRG implementation diverge. As a result, the SBE formulation of the fRG flow allows for a substantial reduction of the numerical effort in the treatment of the two-particle vertex function, paving a promising route for future multiboson and multiloop extensions.
我们通过将最近引入的单玻色子交换(SBE)公式应用于方形晶格上的二维哈伯德模型,来说明其在一圈泛函重整化群(fRG)中的算法优势。我们通过研究费米子 - 玻色子汤川耦合及其相应的物理磁化率在半填充和有限掺杂情况下随温度和相互作用强度的演化,进行了详细分析。与传统的费米子fRG分解相比,结果表明,描述超出SBE过程相关效应的SBE算法的剩余函数,在高于伪临界温度的弱耦合区域中作用可忽略不计,这与传统fRG的剩余函数形成对比。值得注意的是,它们在伪临界转变处也保持有限,而传统fRG实现中的相应剩余函数则发散。因此,fRG流的SBE公式能够大幅减少处理两粒子顶点函数时的数值工作量,为未来的多玻色子和多圈扩展铺平了一条有前景的道路。