Suppr超能文献

DeepBSRPred:基于深度学习的蛋白质结合位点残基预测。

DeepBSRPred: deep learning-based binding site residue prediction for proteins.

机构信息

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.

Department of Computational Biology, Cornell University, New York, NY, USA.

出版信息

Amino Acids. 2023 Oct;55(10):1305-1316. doi: 10.1007/s00726-022-03228-3. Epub 2022 Dec 27.

Abstract

MOTIVATION

Proteins-protein interactions (PPIs) are important to govern several cellular activities. Amino acid residues, which are located at the interface are known as the binding sites and the information about binding sites helps to understand the binding affinities and functions of protein-protein complexes.

RESULTS

We have developed a deep neural network-based method, DeepBSRPred, for predicting the binding sites using protein sequence information and predicted structures from AlphaFold2. Specific sequence and structure-based features include position-specific scoring matrix (PSSM), solvent accessible surface area, conservation score and amino acid properties, and residue depth, respectively. Our method predicted the binding sites with an average F1 score of 0.73 in a dataset of 1236 proteins. Further, we compared the performance with other existing methods in the literature using four benchmark datasets and our method outperformed those methods.

AVAILABILITY AND IMPLEMENTATION

The DeepBSRPred web server can be found at https://web.iitm.ac.in/bioinfo2/deepbsrpred/index.html , along with all datasets used in this study. The trained models, the DeepBSRPred standalone source code, and the feature computation pipeline are freely available at https://web.iitm.ac.in/bioinfo2/deepbsrpred/download.html .

摘要

动机

蛋白质-蛋白质相互作用(PPIs)对于控制多种细胞活动非常重要。位于界面上的氨基酸残基被称为结合位点,关于结合位点的信息有助于理解蛋白质-蛋白质复合物的结合亲和力和功能。

结果

我们开发了一种基于深度神经网络的方法 DeepBSRPred,用于使用来自 AlphaFold2 的蛋白质序列信息和预测结构来预测结合位点。特定的序列和基于结构的特征包括位置特异性评分矩阵(PSSM)、溶剂可及表面积、保守评分和氨基酸特性以及残基深度。我们的方法在包含 1236 个蛋白质的数据集上预测结合位点的平均 F1 得分为 0.73。此外,我们使用四个基准数据集与文献中的其他现有方法进行了性能比较,我们的方法优于这些方法。

可用性和实现

DeepBSRPred 网络服务器可在 https://web.iitm.ac.in/bioinfo2/deepbsrpred/index.html 上找到,以及本研究中使用的所有数据集。训练模型、DeepBSRPred 独立源代码和特征计算管道可在 https://web.iitm.ac.in/bioinfo2/deepbsrpred/download.html 上免费获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验