School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
Molecules. 2023 Jul 2;28(13):5169. doi: 10.3390/molecules28135169.
Deep learning, a potent branch of artificial intelligence, is steadily leaving its transformative imprint across multiple disciplines. Within computational biology, it is expediting progress in the understanding of Protein-Protein Interactions (PPIs), key components governing a wide array of biological functionalities. Hence, an in-depth exploration of PPIs is crucial for decoding the intricate biological system dynamics and unveiling potential avenues for therapeutic interventions. As the deployment of deep learning techniques in PPI analysis proliferates at an accelerated pace, there exists an immediate demand for an exhaustive review that encapsulates and critically assesses these novel developments. Addressing this requirement, this review offers a detailed analysis of the literature from 2021 to 2023, highlighting the cutting-edge deep learning methodologies harnessed for PPI analysis. Thus, this review stands as a crucial reference for researchers in the discipline, presenting an overview of the recent studies in the field. This consolidation helps elucidate the dynamic paradigm of PPI analysis, the evolution of deep learning techniques, and their interdependent dynamics. This scrutiny is expected to serve as a vital aid for researchers, both well-established and newcomers, assisting them in maneuvering the rapidly shifting terrain of deep learning applications in PPI analysis.
深度学习是人工智能的一个重要分支,正在多个学科领域产生变革性的影响。在计算生物学领域,它正在加速人们对蛋白质-蛋白质相互作用(PPIs)的理解,这些相互作用是控制广泛生物功能的关键组成部分。因此,深入探索 PPIs 对于解码复杂的生物系统动态以及揭示潜在的治疗干预途径至关重要。随着深度学习技术在 PPI 分析中的应用迅速普及,人们迫切需要对这些新进展进行全面的综述和批判性评估。为了满足这一需求,本综述对 2021 年至 2023 年的文献进行了详细分析,重点介绍了用于 PPI 分析的前沿深度学习方法。因此,本综述为该领域的研究人员提供了一个重要的参考,概述了该领域的最新研究。这种整合有助于阐明 PPI 分析的动态范例、深度学习技术的发展及其相互依存的动态。预计这种审查将为经验丰富的研究人员和新手提供重要帮助,帮助他们在 PPI 分析中深度学习应用的快速变化的领域中进行操作。