Suppr超能文献

蝾螈杏仁核中神经元类型的分子多样性及其对杏仁核进化的影响。

Molecular Diversity of Neuron Types in the Salamander Amygdala and Implications for Amygdalar Evolution.

机构信息

Department of Biological Sciences, Columbia University, New York, New York, USA.

出版信息

Brain Behav Evol. 2023;98(2):61-75. doi: 10.1159/000527899. Epub 2022 Dec 27.

Abstract

The amygdala is a complex brain structure in the vertebrate telencephalon, essential for regulating social behaviors, emotions, and (social) cognition. In contrast to the vast majority of neuron types described in the many nuclei of the mammalian amygdala, little is known about the neuronal diversity in non-mammals, making reconstruction of its evolution particularly difficult. Here, we characterize glutamatergic neuron types in the amygdala of the urodele amphibian Pleurodeles waltl. Our single-cell RNA sequencing data indicate the existence of at least ten distinct types and subtypes of glutamatergic neurons in the salamander amygdala. These neuron types are molecularly distinct from neurons in the ventral pallium (VP), suggesting that the pallial amygdala and the VP are two separate areas in the telencephalon. In situ hybridization for marker genes indicates that amygdalar glutamatergic neuron types are located in three major subdivisions: the lateral amygdala, the medial amygdala, and a newly defined area demarcated by high expression of the transcription factor Sim1. The gene expression profiles of these neuron types suggest similarities with specific neurons in the sauropsid and mammalian amygdala. In particular, we identify Sim1+ and Sim1+ Otp+ expressing neuron types, potentially homologous to the mammalian nucleus of the lateral olfactory tract (NLOT) and to hypothalamic-derived neurons of the medial amygdala, respectively. Taken together, our results reveal a surprising diversity of glutamatergic neuron types in the amygdala of salamanders, despite the anatomical simplicity of their brain. These results offer new insights on the cellular and anatomical complexity of the amygdala in tetrapod ancestors.

摘要

杏仁核是脊椎动物端脑中的一个复杂结构,对于调节社交行为、情绪和(社交)认知至关重要。与哺乳动物杏仁核的许多核中描述的绝大多数神经元类型相比,关于非哺乳动物中神经元多样性的了解甚少,这使得对其进化的重建特别困难。在这里,我们描述了蝾螈 Pleurodeles waltl 杏仁核中的谷氨酸能神经元类型。我们的单细胞 RNA 测序数据表明,蝾螈杏仁核中至少存在十种不同类型和亚型的谷氨酸能神经元。这些神经元类型在分子上与腹侧苍白球(VP)中的神经元不同,表明大脑皮层的杏仁核和 VP 是大脑中的两个独立区域。标记基因的原位杂交表明,杏仁核中的谷氨酸能神经元类型位于三个主要的细分区域:外侧杏仁核、内侧杏仁核和一个由转录因子 Sim1 高表达定义的新区域。这些神经元类型的基因表达谱表明与有鳞目动物和哺乳动物杏仁核中的特定神经元具有相似性。特别是,我们鉴定了 Sim1+ 和 Sim1+ Otp+ 表达的神经元类型,它们可能与哺乳动物外侧嗅束核(NLOT)和内侧杏仁核下丘脑衍生神经元同源。总之,尽管它们的大脑结构简单,但我们的研究结果揭示了蝾螈杏仁核中谷氨酸能神经元类型的惊人多样性。这些结果为四足动物祖先杏仁核的细胞和解剖复杂性提供了新的见解。

相似文献

1
Molecular Diversity of Neuron Types in the Salamander Amygdala and Implications for Amygdalar Evolution.
Brain Behav Evol. 2023;98(2):61-75. doi: 10.1159/000527899. Epub 2022 Dec 27.
3
Sim1-expressing cells illuminate the origin and course of migration of the nucleus of the lateral olfactory tract in the mouse amygdala.
Brain Struct Funct. 2021 Mar;226(2):519-562. doi: 10.1007/s00429-020-02197-1. Epub 2021 Jan 25.
5
The caudo-ventral pallium is a novel pallial domain expressing Gdf10 and generating Ebf3-positive neurons of the medial amygdala.
Brain Struct Funct. 2018 Sep;223(7):3279-3295. doi: 10.1007/s00429-018-1687-0. Epub 2018 Jun 4.
6
Analysis of the Pallial Amygdala in Anurans: Derivatives and Cellular Components.
Brain Behav Evol. 2022;97(6):309-320. doi: 10.1159/000525018. Epub 2022 May 25.
7
Evolution and Development of Amygdala Subdivisions: Pallial, Subpallial, and Beyond.
Brain Behav Evol. 2023;98(1):1-21. doi: 10.1159/000527512. Epub 2022 Oct 20.
8
Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution.
Science. 2022 Sep 2;377(6610):eabp9186. doi: 10.1126/science.abp9186.
10
The Everted Amygdala of Ray-Finned Fish: Zebrafish Makes a Case.
Brain Behav Evol. 2022;97(6):321-335. doi: 10.1159/000525669. Epub 2022 Jun 27.

引用本文的文献

1
Divergence in neuronal signaling pathways despite conserved neuronal identity among Caenorhabditis species.
Curr Biol. 2025 Jun 23;35(12):2927-2945.e7. doi: 10.1016/j.cub.2025.05.036. Epub 2025 May 23.
2
Development and function of the medial amygdala.
Trends Neurosci. 2025 Jan;48(1):22-32. doi: 10.1016/j.tins.2024.11.004. Epub 2024 Dec 12.
3
Does a Vertebrate Morphotype of Pallial Subdivisions Really Exist?
Brain Behav Evol. 2024;99(4):230-247. doi: 10.1159/000537746. Epub 2024 Jul 16.

本文引用的文献

1
Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution.
Science. 2022 Sep 2;377(6610):eabp9186. doi: 10.1126/science.abp9186.
3
Novel Perspectives on the Development of the Amygdala in Rodents.
Front Neuroanat. 2021 Dec 9;15:786679. doi: 10.3389/fnana.2021.786679. eCollection 2021.
4
Single-cell delineation of lineage and genetic identity in the mouse brain.
Nature. 2022 Jan;601(7893):404-409. doi: 10.1038/s41586-021-04237-0. Epub 2021 Dec 15.
5
Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii.
J Exp Zool B Mol Dev Evol. 2022 Jun;338(4):225-240. doi: 10.1002/jez.b.23100. Epub 2021 Nov 18.
6
Evolving Views on the Pallium.
Brain Behav Evol. 2022;96(4-6):181-199. doi: 10.1159/000519260. Epub 2021 Oct 15.
7
Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain.
Brain Behav Evol. 2022;96(4-6):263-282. doi: 10.1159/000519025. Epub 2021 Oct 6.
8
From Cell Types to an Integrated Understanding of Brain Evolution: The Case of the Cerebral Cortex.
Annu Rev Cell Dev Biol. 2021 Oct 6;37:495-517. doi: 10.1146/annurev-cellbio-120319-112654. Epub 2021 Aug 20.
10
Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits.
Science. 2021 Feb 12;371(6530). doi: 10.1126/science.abd9704.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验