Suppr超能文献

基于定向传递函数的癫痫病因脑网络动态分析

[Dynamic analysis of epileptic causal brain networks based on directional transfer function].

作者信息

Han Ling, Song Xinke, Li Chunsheng

机构信息

Department of Biomedical Engineering, School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1082-1088. doi: 10.7507/1001-5515.202202022.

Abstract

Epilepsy is a neurological disease with disordered brain network connectivity. It is important to analyze the brain network mechanism of epileptic seizure from the perspective of directed functional connectivity. In this paper, causal brain networks were constructed for different sub-bands of epileptic electroencephalogram (EEG) signals in interictal, preictal and ictal phases by directional transfer function method, and the information transmission pathway and dynamic change process of brain network under different conditions were analyzed. Finally, the dynamic changes of characteristic attributes of brain networks with different rhythms were analyzed. The results show that the topology of brain network changes from stochastic network to rule network during the three stage and the node connections of the whole brain network show a trend of gradual decline. The number of pathway connections between internal nodes of frontal, temporal and occipital regions increase. There are a lot of hub nodes with information outflow in the lesion region. The global efficiency in ictal stage of α, β and γ waves are significantly higher than in the interictal and the preictal stage. The clustering coefficients in preictal stage are higher than in the ictal stage and the clustering coefficients in ictal stage are higher than in the interictal stage. The clustering coefficients of frontal, temporal and parietal lobes are significantly increased. The results of this study indicate that the topological structure and characteristic properties of epileptic causal brain network can reflect the dynamic process of epileptic seizures. In the future, this study has important research value in the localization of epileptic focus and prediction of epileptic seizure.

摘要

癫痫是一种脑网络连接紊乱的神经疾病。从定向功能连接的角度分析癫痫发作的脑网络机制具有重要意义。本文采用定向传递函数方法,针对癫痫脑电图(EEG)信号在发作间期、发作前期和发作期的不同子频段构建因果脑网络,分析不同条件下脑网络的信息传递路径及动态变化过程。最后,分析了不同节律脑网络特征属性的动态变化。结果表明,在三个阶段中脑网络拓扑结构从随机网络转变为规则网络,全脑网络的节点连接呈现逐渐下降趋势。额叶、颞叶和枕叶区域内部节点之间的通路连接数量增加。病变区域存在大量具有信息流出的枢纽节点。α、β和γ波发作期的全局效率显著高于发作间期和发作前期。发作前期的聚类系数高于发作期,发作期的聚类系数高于发作间期。额叶、颞叶和顶叶的聚类系数显著增加。本研究结果表明,癫痫因果脑网络的拓扑结构和特征属性能够反映癫痫发作的动态过程。未来,本研究在癫痫病灶定位和癫痫发作预测方面具有重要的研究价值。

相似文献

1
[Dynamic analysis of epileptic causal brain networks based on directional transfer function].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1082-1088. doi: 10.7507/1001-5515.202202022.
2
Causal Connectivity Network Analysis of Ictal Electrocorticogram With Temporal Lobe Epilepsy Based on Dynamic Phase Transfer Entropy.
IEEE Trans Biomed Eng. 2024 Feb;71(2):531-541. doi: 10.1109/TBME.2023.3308616. Epub 2024 Jan 19.
3
Disrupted Ipsilateral Network Connectivity in Temporal Lobe Epilepsy.
PLoS One. 2015 Oct 21;10(10):e0140859. doi: 10.1371/journal.pone.0140859. eCollection 2015.
4
It's All About the Networks.
Epilepsy Curr. 2019 May-Jun;19(3):165-167. doi: 10.1177/1535759719843301. Epub 2019 Apr 29.
5
Transition of brain networks from an interictal to a preictal state preceding a seizure revealed by scalp EEG network analysis.
Cogn Neurodyn. 2019 Apr;13(2):175-181. doi: 10.1007/s11571-018-09517-6. Epub 2019 Jan 2.
6
Characterisation of ictal and interictal states of epilepsy: A system dynamic approach of principal dynamic modes analysis.
PLoS One. 2018 Jan 19;13(1):e0191392. doi: 10.1371/journal.pone.0191392. eCollection 2018.
8
Modulation of epileptic networks by transient interictal epileptic activity: A dynamic approach to simultaneous EEG-fMRI.
Neuroimage Clin. 2020;28:102467. doi: 10.1016/j.nicl.2020.102467. Epub 2020 Oct 14.
9
Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and graph analysis of the interictal and immediate preictal states.
Epilepsy Res. 2013 Oct;106(3):357-69. doi: 10.1016/j.eplepsyres.2013.06.017. Epub 2013 Jul 22.
10
Assessing the equivalence between etomidate and seizure network dynamics in temporal lobe epilepsy.
Clin Neurophysiol. 2016 Jan;127(1):169-178. doi: 10.1016/j.clinph.2015.05.008. Epub 2015 May 14.

引用本文的文献

2
Functional connectivity of EEG motor rhythms after spinal cord injury.
Cogn Neurodyn. 2024 Oct;18(5):3015-3029. doi: 10.1007/s11571-024-10136-7. Epub 2024 Jun 10.

本文引用的文献

1
Seizure Prediction Using Directed Transfer Function and Convolution Neural Network on Intracranial EEG.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2711-2720. doi: 10.1109/TNSRE.2020.3035836. Epub 2021 Jan 28.
4
[Isolated effective coherence analysis of epileptogenic networks in temporal lobe epilepsy using stereo-electroencephalography].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Aug 25;36(4):541-547. doi: 10.7507/1001-5515.201806003.
5
[Prediction of seizures in sleep based on power spectrum].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Jun 25;35(3):329-336. doi: 10.7507/1001-5515.201708062.
6
[Research on classification of brain functional network features during mental fatigue].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Apr 25;35(2):171-175. doi: 10.7507/1001-5515.201609032.
7
Disrupted dynamic network reconfiguration of the language system in temporal lobe epilepsy.
Brain. 2018 May 1;141(5):1375-1389. doi: 10.1093/brain/awy042.
8
Modular Brain Networks.
Annu Rev Psychol. 2016;67:613-40. doi: 10.1146/annurev-psych-122414-033634. Epub 2015 Sep 21.
9
The brain's default mode network.
Annu Rev Neurosci. 2015 Jul 8;38:433-47. doi: 10.1146/annurev-neuro-071013-014030. Epub 2015 May 4.
10
Modern network science of neurological disorders.
Nat Rev Neurosci. 2014 Oct;15(10):683-95. doi: 10.1038/nrn3801. Epub 2014 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验