Suppr超能文献

头皮脑电图网络分析揭示癫痫发作前脑网络从发作间期到发作前期的转变。

Transition of brain networks from an interictal to a preictal state preceding a seizure revealed by scalp EEG network analysis.

作者信息

Li Fali, Liang Yi, Zhang Luyan, Yi Chanlin, Liao Yuanyuan, Jiang Yuanling, Si Yajing, Zhang Yangsong, Yao Dezhong, Yu Liang, Xu Peng

机构信息

1The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.

2Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.

出版信息

Cogn Neurodyn. 2019 Apr;13(2):175-181. doi: 10.1007/s11571-018-09517-6. Epub 2019 Jan 2.

Abstract

Epilepsy is a neurological disorder in the brain that is characterized by unprovoked seizures. Epileptic seizures are attributed to abnormal synchronous neuronal activity in the brain. To detect the seizure as early as possible, the identification of specific electroencephalogram (EEG) dynamics is of great importance in investigating the transition of brain activity as the epileptic seizure approaches. In this study, we investigated the transition of brain activity from interictal to preictal states preceding a seizure by combining EEG network and clustering analyses together in different frequency bands. The findings of this study demonstrated the best clustering performance of k-medoids in the beta band; in addition, compared to the interictal state, the preictal state experienced increased synchronization of EEG network connectivity, characterized by relatively higher network properties. These findings can provide helpful insight into the mechanism of epilepsy, which can also be used in the prediction of epileptic seizures and subsequent intervention.

摘要

癫痫是一种脑部神经疾病,其特征为无端发作。癫痫发作归因于大脑中异常的同步神经元活动。为了尽早检测到发作,识别特定的脑电图(EEG)动态对于研究癫痫发作临近时脑活动的转变至关重要。在本研究中,我们通过在不同频段将EEG网络分析和聚类分析相结合,研究了癫痫发作前从发作间期到发作前期脑活动的转变。本研究结果表明,k-中心点算法在β频段具有最佳聚类性能;此外,与发作间期状态相比,发作前期状态下EEG网络连接的同步性增加,其特征为网络属性相对较高。这些发现可为癫痫机制提供有益见解,也可用于癫痫发作的预测及后续干预。

相似文献

1
Transition of brain networks from an interictal to a preictal state preceding a seizure revealed by scalp EEG network analysis.
Cogn Neurodyn. 2019 Apr;13(2):175-181. doi: 10.1007/s11571-018-09517-6. Epub 2019 Jan 2.
2
Preictal state identification by synchronization changes in long-term intracranial EEG recordings.
Clin Neurophysiol. 2005 Mar;116(3):559-68. doi: 10.1016/j.clinph.2004.10.014. Epub 2004 Dec 25.
3
Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and graph analysis of the interictal and immediate preictal states.
Epilepsy Res. 2013 Oct;106(3):357-69. doi: 10.1016/j.eplepsyres.2013.06.017. Epub 2013 Jul 22.
5
Preictal dynamics of EEG complexity in intracranially recorded epileptic seizure: a case report.
Medicine (Baltimore). 2014 Nov;93(23):e151. doi: 10.1097/MD.0000000000000151.
6
[Dynamic analysis of epileptic causal brain networks based on directional transfer function].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1082-1088. doi: 10.7507/1001-5515.202202022.
7
Preictal Time Assessment using Heart Rate Variability Features in Drug-resistant Epilepsy Patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6776-6779. doi: 10.1109/EMBC.2019.8857897.
8
Internetwork and intranetwork communications during bursting dynamics: applications to seizure prediction.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021920. doi: 10.1103/PhysRevE.76.021920. Epub 2007 Aug 20.
9
Predicting epileptic seizures from scalp EEG based on attractor state analysis.
Comput Methods Programs Biomed. 2017 May;143:75-87. doi: 10.1016/j.cmpb.2017.03.002. Epub 2017 Mar 2.
10
Unsupervised EEG preictal interval identification in patients with drug-resistant epilepsy.
Sci Rep. 2023 Jan 16;13(1):784. doi: 10.1038/s41598-022-23902-6.

引用本文的文献

1
Combining temporal and spatial attention for seizure prediction.
Health Inf Sci Syst. 2023 Aug 23;11(1):38. doi: 10.1007/s13755-023-00239-6. eCollection 2023 Dec.
2
Antipsychotics-induced improvement of cool executive function in individuals living with schizophrenia.
Front Psychiatry. 2023 Apr 27;14:1154011. doi: 10.3389/fpsyt.2023.1154011. eCollection 2023.
4
Unsupervised EEG preictal interval identification in patients with drug-resistant epilepsy.
Sci Rep. 2023 Jan 16;13(1):784. doi: 10.1038/s41598-022-23902-6.
5
An Explainable Statistical Method for Seizure Prediction Using Brain Functional Connectivity from EEG.
Comput Intell Neurosci. 2022 Dec 8;2022:2183562. doi: 10.1155/2022/2183562. eCollection 2022.
6
The performance evaluation of the state-of-the-art EEG-based seizure prediction models.
Front Neurol. 2022 Nov 24;13:1016224. doi: 10.3389/fneur.2022.1016224. eCollection 2022.
7
Dynamic networks of P300-related process.
Cogn Neurodyn. 2022 Oct;16(5):975-985. doi: 10.1007/s11571-021-09753-3. Epub 2022 Jan 10.
8
A survey of brain network analysis by electroencephalographic signals.
Cogn Neurodyn. 2022 Feb;16(1):17-41. doi: 10.1007/s11571-021-09689-8. Epub 2021 Jun 14.
9
[Research progress of epileptic seizure predictions based on electroencephalogram signals].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Dec 25;38(6):1193-1202. doi: 10.7507/1001-5515.202105052.
10
Spatiotemporal evolution of epileptic seizure based on mutual information and dynamic brain network.
BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):80. doi: 10.1186/s12911-021-01439-4.

本文引用的文献

1
Top-Down Disconnectivity in Schizophrenia During P300 Tasks.
Front Comput Neurosci. 2018 May 23;12:33. doi: 10.3389/fncom.2018.00033. eCollection 2018.
3
Mesoscopic neuron population modeling of normal/epileptic brain dynamics.
Cogn Neurodyn. 2018 Apr;12(2):211-223. doi: 10.1007/s11571-017-9468-7. Epub 2017 Dec 26.
4
Measures of entropy and complexity in altered states of consciousness.
Cogn Neurodyn. 2018 Feb;12(1):73-84. doi: 10.1007/s11571-017-9459-8. Epub 2017 Oct 20.
5
Analysis of functional brain connections for positive-negative emotions using phase locking value.
Cogn Neurodyn. 2017 Dec;11(6):487-500. doi: 10.1007/s11571-017-9447-z. Epub 2017 Jul 15.
6
Time-Varying Networks of Inter-Ictal Discharging Reveal Epileptogenic Zone.
Front Comput Neurosci. 2017 Aug 18;11:77. doi: 10.3389/fncom.2017.00077. eCollection 2017.
7
An EEG-based machine learning method to screen alcohol use disorder.
Cogn Neurodyn. 2017 Apr;11(2):161-171. doi: 10.1007/s11571-016-9416-y. Epub 2016 Oct 24.
10
Visibility Graph from Adaptive Optimal Kernel Time-Frequency Representation for Classification of Epileptiform EEG.
Int J Neural Syst. 2017 Jun;27(4):1750005. doi: 10.1142/S0129065717500058. Epub 2016 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验