Suppr超能文献

利用数字病理学图像上的深度学习对骨转移癌的起源进行准确预测。

An accurate prediction of the origin for bone metastatic cancer using deep learning on digital pathological images.

机构信息

Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China.

Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

EBioMedicine. 2023 Jan;87:104426. doi: 10.1016/j.ebiom.2022.104426. Epub 2022 Dec 26.

Abstract

BACKGROUND

Determining the origin of bone metastatic cancer (OBMC) is of great significance to clinical therapeutics. It is challenging for pathologists to determine the OBMC with limited clinical information and bone biopsy.

METHODS

We designed a regional multiple-instance learning algorithm to predict the OBMC based on hematoxylin-eosin (H&E) staining slides alone. We collected 1041 cases from eight different hospitals and labeled 26,431 regions of interest to train the model. The performance of the model was assessed by ten-fold cross validation and external validation. Under the guidance of top3 predictions, we conducted an IHC test on 175 cases of unknown origins to compare the consistency of the results predicted by the model and indicated by the IHC markers. We also applied the model to identify whether there was tumor or not in a region, as well as distinguishing squamous cell carcinoma, adenocarcinoma, and neuroendocrine tumor.

FINDINGS

In the within-cohort, our model achieved a top1-accuracy of 91.35% and a top3-accuracy of 97.75%. In the external cohort, our model displayed a good generalizability with a top3-accuracy of 97.44%. The top1 consistency between the results of the model and the immunohistochemistry markers was 83.90% and the top3 consistency was 94.33%. The model obtained an accuracy of 98.98% to identify whether there was tumor or not and an accuracy of 93.85% to differentiate three types of cancers.

INTERPRETATION

Our model demonstrated good performance to predict the OBMC from routine histology and had great potential for assisting pathologists with determining the OBMC accurately.

FUNDING

National Science Foundation of China (61875102 and 61975089), Natural Science Foundation of Guangdong province (2021A15-15012379 and 2022A1515 012550), Science and Technology Research Program of Shenzhen City (JCYJ20200109110606054 and WDZC20200821141349001), and Tsinghua University Spring Breeze Fund (2020Z99CFZ023).

摘要

背景

确定骨转移性癌症(OBMC)的起源对于临床治疗具有重要意义。病理学家在有限的临床信息和骨活检的情况下确定 OBMC 具有挑战性。

方法

我们设计了一个区域多实例学习算法,仅基于苏木精-伊红(H&E)染色幻灯片来预测 OBMC。我们从八家不同的医院收集了 1041 例病例,并标记了 26431 个感兴趣区域来训练模型。通过十折交叉验证和外部验证评估模型的性能。在前三名预测的指导下,我们对 175 例来源不明的病例进行了免疫组织化学(IHC)检测,以比较模型预测结果与 IHC 标志物的一致性。我们还应用该模型来识别一个区域是否存在肿瘤,并区分鳞状细胞癌、腺癌和神经内分泌肿瘤。

结果

在内部队列中,我们的模型在 top1-准确度达到 91.35%,top3-准确度达到 97.75%。在外部队列中,我们的模型表现出良好的泛化能力,top3-准确度达到 97.44%。模型预测结果与免疫组化标志物的 top1 一致性为 83.90%,top3 一致性为 94.33%。该模型在识别是否存在肿瘤方面的准确率为 98.98%,在区分三种癌症类型方面的准确率为 93.85%。

解释

我们的模型从常规组织学中预测 OBMC 的性能良好,具有帮助病理学家准确确定 OBMC 的巨大潜力。

资金

国家自然科学基金(61875102 和 61975089),广东省自然科学基金(2021A15-15012379 和 2022A1515012550),深圳市科技计划项目(JCYJ20200109110606054 和 WDZC20200821141349001),以及清华大学春风基金(2020Z99CFZ023)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153a/9803701/b8da2ab07ddc/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验