Suppr超能文献

利用光镊对人类精子纵向滚动的手性和频率测量

Chirality and frequency measurement of longitudinal rolling of human sperm using optical trap.

作者信息

Zhong Zhensheng, Zhang Can, Liu Rui, He Jun, Yang Han, Cheng Zijie, Wang Tao, Shao Meng, Fang Shu, Zhang Shengzhao, Shi Hui, Xue Rufeng, Zou Huijuan, Ke Zeyu, Zhang Zhiguo, Zhou Jinhua

机构信息

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China.

Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

Front Bioeng Biotechnol. 2022 Dec 12;10:1028857. doi: 10.3389/fbioe.2022.1028857. eCollection 2022.

Abstract

Motility is one of the most critical features to evaluate sperm quality. As longitudinal rolling of human sperm has long been ignored until recently, its detailed dynamics and cellular biological mechanisms are still largely unknown. Here we report an optical-tweezers-based method to evaluate the chirality and frequency of sperm rotation. According to the intensity distribution patterns of off-focus micron-size particles, we established a method to judge the orientation of the sperm head along the optical axis in the optical trap. Together with the rotation direction of the projection of the sperm head, the chirality of longitudinal rolling of sperm can be measured without the application of three-dimensional tracking techniques or complex optical design. By video tracking optically trapped sperm cells from different patients, both rolling chirality and rolling frequency were analyzed. In this study, all the vertically trapped human sperm cells adopt a right-hand longitudinal rolling. The orientation and rolling frequency but not the rolling chirality of sperm in the optical trap are affected by the trap height. The rotation analysis method developed in this study may have clinical potential for sperm quality evaluation.

摘要

活力是评估精子质量的最关键特征之一。由于人类精子的纵向翻滚直到最近才被长期忽视,其详细的动力学和细胞生物学机制在很大程度上仍然未知。在此,我们报告一种基于光镊的方法来评估精子旋转的手性和频率。根据离焦微米级粒子的强度分布模式,我们建立了一种方法来判断精子头部在光阱中沿光轴的方向。结合精子头部投影的旋转方向,无需应用三维跟踪技术或复杂的光学设计就可以测量精子纵向翻滚的手性。通过视频跟踪来自不同患者的光镊捕获的精子细胞,分析了翻滚手性和翻滚频率。在本研究中,所有垂直捕获的人类精子细胞都采用右手纵向翻滚。光阱中精子的方向和翻滚频率而非翻滚手性受阱高度的影响。本研究开发的旋转分析方法可能在精子质量评估方面具有临床潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e92d/9790903/bcf11e9ba22a/fbioe-10-1028857-g001.jpg

相似文献

1
Chirality and frequency measurement of longitudinal rolling of human sperm using optical trap.
Front Bioeng Biotechnol. 2022 Dec 12;10:1028857. doi: 10.3389/fbioe.2022.1028857. eCollection 2022.
2
Time and power dependence of laser-induced photodamage on human sperm revealed by longitudinal rolling measurement using optical tweezers.
Biomed Opt Express. 2024 May 2;15(6):3563-3573. doi: 10.1364/BOE.519258. eCollection 2024 Jun 1.
3
Deep learning-based method for analyzing the optically trapped sperm rotation.
Sci Rep. 2023 Aug 3;13(1):12575. doi: 10.1038/s41598-023-39819-7.
4
Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca signaling.
EMBO J. 2020 Feb 17;39(4):e102363. doi: 10.15252/embj.2019102363. Epub 2020 Jan 19.
5
Automated motile cell capture and analysis with optical traps.
Methods Cell Biol. 2007;82:601-27. doi: 10.1016/S0091-679X(06)82021-2.
7
Four-dimensional analysis by high-speed holographic imaging reveals a chiral memory of sperm flagella.
PLoS One. 2018 Jun 28;13(6):e0199678. doi: 10.1371/journal.pone.0199678. eCollection 2018.
8
Real-time calcium measurements of live optically trapped microorganisms.
J Biophotonics. 2014 Aug;7(8):571-9. doi: 10.1002/jbio.201200209. Epub 2013 Apr 11.
9
Effects of viscosity on sperm motility studied with optical tweezers.
J Biomed Opt. 2012 Feb;17(2):025005. doi: 10.1117/1.JBO.17.2.025005.
10
Analysis of sperm motility using optical tweezers.
J Biomed Opt. 2006 Jul-Aug;11(4):044001. doi: 10.1117/1.2337559.

引用本文的文献

1
Sperm quality analyzer: A portable LED array microscope with dark-field imaging.
Bioeng Transl Med. 2024 Aug 2;9(6):e10703. doi: 10.1002/btm2.10703. eCollection 2024 Nov.
2
Time and power dependence of laser-induced photodamage on human sperm revealed by longitudinal rolling measurement using optical tweezers.
Biomed Opt Express. 2024 May 2;15(6):3563-3573. doi: 10.1364/BOE.519258. eCollection 2024 Jun 1.
3
Applications of laser technology in the manipulation of human spermatozoa.
Reprod Biol Endocrinol. 2023 Oct 21;21(1):93. doi: 10.1186/s12958-023-01148-9.
4
Deep learning-based method for analyzing the optically trapped sperm rotation.
Sci Rep. 2023 Aug 3;13(1):12575. doi: 10.1038/s41598-023-39819-7.

本文引用的文献

2
Reconstruction of the three-dimensional beat pattern underlying swimming behaviors of sperm.
Eur Phys J E Soft Matter. 2021 Jul 1;44(7):87. doi: 10.1140/epje/s10189-021-00076-z.
3
Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca signaling.
EMBO J. 2020 Feb 17;39(4):e102363. doi: 10.15252/embj.2019102363. Epub 2020 Jan 19.
4
Novel Techniques of Sperm Selection for Improving IVF and ICSI Outcomes.
Front Cell Dev Biol. 2019 Nov 29;7:298. doi: 10.3389/fcell.2019.00298. eCollection 2019.
5
Calculation of optical forces for arbitrary light beams using the Fourier ray method.
Opt Express. 2019 Sep 30;27(20):27459-27476. doi: 10.1364/OE.27.027459.
6
Optical tweezers as an effective tool for spermatozoa isolation from mixed forensic samples.
PLoS One. 2019 Feb 7;14(2):e0211810. doi: 10.1371/journal.pone.0211810. eCollection 2019.
8
Effect of red light on optically trapped spermatozoa.
Biomed Opt Express. 2017 Aug 23;8(9):4200-4205. doi: 10.1364/BOE.8.004200. eCollection 2017 Sep 1.
9
Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15904-9. doi: 10.1073/pnas.1515159112. Epub 2015 Dec 10.
10
A unique view on male infertility around the globe.
Reprod Biol Endocrinol. 2015 Apr 26;13:37. doi: 10.1186/s12958-015-0032-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验