Suppr超能文献

利用等离子体和光子晶体纳米结构增强对微米和纳米颗粒的操控。

Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.

作者信息

Simmons Cameron S, Knouf Emily Christine, Tewari Muneesh, Lin Lih Y

机构信息

Electrical Engineering Department, University of Washington, USA.

出版信息

J Vis Exp. 2011 Sep 27(55):3390. doi: 10.3791/3390.

Abstract

A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP). However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision. However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples. A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET's have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution. This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle. The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP's generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap. The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6. Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles. The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper.

摘要

一种无损操纵亚微米颗粒位置和方向的方法,对于基础生物学研究来说将是一种极其有用的工具。或许,实现对小颗粒非侵入性操纵最广泛使用的物理力是介电泳(DEP)。然而,DEP本身缺乏操纵细胞时所需的多功能性和精确性,因为传统上它是通过固定电极来完成的。光镊利用三维电磁场梯度对小颗粒施加力,实现了这种所需的多功能性和精确性。然而,这种方法的一个主要缺点是,要获得捕获颗粒所需的必要力,需要高辐射强度,这可能会损坏生物样本。一种允许以较低光强度进行捕获和分选的解决方案是光电镊子(OET),但OET在精细操纵小颗粒方面存在局限性;作为基于DEP的技术,它也对溶液的性质有所限制。本文视频将描述两种降低活细胞光操纵所需辐射强度的方法,并描述一种方向控制方法。第一种方法是等离子体镊子,它使用随机金纳米颗粒(AuNP)阵列作为样品的基底,如图1所示。AuNP阵列将入射光子转换为局域表面等离子体(LSP),LSP由共振偶极矩组成,这些偶极矩辐射并在细胞溶液中产生具有大梯度的图案化辐射场。Righini等人关于表面等离子体增强捕获的初步工作以及我们自己的建模表明,等离子体基底产生的场通过增强捕获颗粒的梯度场降低了所需的初始强度。由于更有效地将光能转换为机械能以及偶极依赖的辐射场,等离子体方法允许在低光强度下对椭球形颗粒和细胞进行精细的方向控制。这些场如图2所示,低捕获强度在图4和图5中有详细说明。等离子体镊子的主要问题是LSP会产生大量热量,并且捕获只是二维的。这种热量会产生对流和热泳,其强度足以将亚微米颗粒从捕获中排出。我们将描述的第二种方法是利用周期性介电纳米结构将入射光非常有效地散射到衍射模式中,如图6所示。理想情况下,人们会用介电材料制作这种结构,以避免等离子体镊子所经历的相同加热问题,但在我们的方法中,使用涂铝衍射光栅作为一维周期性介电纳米结构。尽管它不是半导体,但它没有经历显著的加热,并且能够以低捕获强度有效地捕获小颗粒,如图7所示。颗粒与光栅基底的对齐从概念上验证了二维光子晶体可以允许非球形微米级颗粒精确旋转的命题。由于本文所述纳米结构产生的增强场,这些光阱的效率得到了提高。

相似文献

2
Optothermal Manipulations of Colloidal Particles and Living Cells.
Acc Chem Res. 2018 Jun 19;51(6):1465-1474. doi: 10.1021/acs.accounts.8b00102. Epub 2018 May 25.
4
Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
Nano Lett. 2012 Nov 14;12(11):5581-6. doi: 10.1021/nl302627c. Epub 2012 Oct 12.
5
Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
Nat Nanotechnol. 2020 Nov;15(11):908-913. doi: 10.1038/s41565-020-0760-z. Epub 2020 Aug 31.
6
Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.
Opt Express. 2008 Sep 1;16(18):13517-25. doi: 10.1364/oe.16.013517.
7
Fabrication and Operation of a Nano-Optical Conveyor Belt.
J Vis Exp. 2015 Aug 26(102):e52842. doi: 10.3791/52842.
8
Nanomanipulation using silicon photonic crystal resonators.
Nano Lett. 2010 Jan;10(1):99-104. doi: 10.1021/nl9029225.
9
Laser trapping of colloidal metal nanoparticles.
ACS Nano. 2015;9(4):3453-69. doi: 10.1021/acsnano.5b00286. Epub 2015 Apr 1.
10
Dynamic Trapping and Manipulation of Self-Assembled Ag Nanoplates as Efficient Plasmonic Tweezers.
ACS Appl Mater Interfaces. 2023 Jun 14;15(23):28731-28738. doi: 10.1021/acsami.3c02413. Epub 2023 Jun 5.

本文引用的文献

1
Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles.
Opt Express. 2010 Jul 19;18(15):16005-13. doi: 10.1364/OE.18.016005.
2
Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media.
Lab Chip. 2010 Jan 21;10(2):165-72. doi: 10.1039/b906593h. Epub 2009 Sep 7.
4
Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.
Opt Express. 2008 Sep 1;16(18):13517-25. doi: 10.1364/oe.16.013517.
6
Massively parallel manipulation of single cells and microparticles using optical images.
Nature. 2005 Jul 21;436(7049):370-2. doi: 10.1038/nature03831.
7
Characterization of photodamage to Escherichia coli in optical traps.
Biophys J. 1999 Nov;77(5):2856-63. doi: 10.1016/S0006-3495(99)77117-1.
8
Optical trapping and manipulation of neutral particles using lasers.
Proc Natl Acad Sci U S A. 1997 May 13;94(10):4853-60. doi: 10.1073/pnas.94.10.4853.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验