Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Republic of Korea.
Adv Mater. 2023 Mar;35(10):e2207076. doi: 10.1002/adma.202207076. Epub 2023 Jan 18.
During solid-state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid-state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state-of-the-art Ni-rich layered oxides (LiNi Co Mn O , NRNCM) as cathode materials for lithium-ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron-based X-ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature-dependent reaction kinetics, the diffusivity of solid-state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high-energy/power density lithium-ion batteries.
在固态煅烧过程中,随着温度的升高,材料会经历复杂的相变和非均相固态反应以及质量传输。因此,精确控制煅烧化学对于合成最先进的富镍层状氧化物(LiNi Co Mn O ,NRNCM)作为锂离子电池的阴极材料至关重要。尽管电池性能取决于 NRNCM 煅烧过程中的化学不均匀性,但目前尚未阐明。在此,通过基于同步加速器的 X 射线、质谱显微镜和结构分析,揭示了温度依赖性反应动力学、固态锂源的扩散性和环境氧气控制煅烧颗粒内反应中间体局部化学成分。此外,还发现过渡金属(即 Ni、Co 和 Mn)的还原能力变化决定了纳米尺度上的局部结构。通过成像分析研究反应机制为调整煅烧化学和开发高能量/功率密度锂离子电池提供了有价值的信息。