Suppr超能文献

用于在干燥和潮湿条件下高效乙烯净化的高度稳健的微孔金属有机框架

Highly Robust Microporous Metal-Organic Frameworks for Efficient Ethylene Purification under Dry and Humid Conditions.

作者信息

Liu Wansheng, Geng Shubo, Li Ning, Wang Sa, Jia Shuping, Jin Fazheng, Wang Ting, Forrest Katherine A, Pham Tony, Cheng Peng, Chen Yao, Ma Jian-Gong, Zhang Zhenjie

机构信息

State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China.

Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.

出版信息

Angew Chem Int Ed Engl. 2023 Feb 13;62(8):e202217662. doi: 10.1002/anie.202217662. Epub 2023 Jan 18.

Abstract

Two C H -selective metal-organic framework (MOF) adsorbents with ultrahigh stability, high surface areas, and suitable pore size have been designed and synthesized for one-step separation of ethane/ethylene (C H /C H ) under humid conditions to produce polymer-grade pure C H . Experimental results reveal that these two MOFs not only adsorb a high amount of C H but also display good C H /C H selectivity verified by fixed bed column breakthrough experiments. Most importantly, the good water stability and hydrophobic pore environments make these two MOFs capable of efficiently separating C H /C H under humid conditions, exhibiting the benchmark performance among all reported adsorbents for separation of C H /C H under humid conditions. Moreover, the affinity sites and their static adsorption energies were successfully revealed by single crystal data and computation studies. Adsorbents described in this work can be used to address major chemical industrial challenges.

摘要

设计并合成了两种具有超高稳定性、高比表面积和合适孔径的C₂H₆选择性金属有机框架(MOF)吸附剂,用于在潮湿条件下一步分离乙烷/乙烯(C₂H₆/C₂H₄)以生产聚合物级纯C₂H₄。实验结果表明,这两种MOF不仅能吸附大量的C₂H₆,而且通过固定床柱穿透实验验证了其具有良好的C₂H₆/C₂H₄选择性。最重要的是,良好的水稳定性和疏水孔环境使这两种MOF能够在潮湿条件下有效地分离C₂H₆/C₂H₄,在所有报道的用于潮湿条件下分离C₂H₆/C₂H₄的吸附剂中表现出基准性能。此外,通过单晶数据和计算研究成功揭示了亲和位点及其静态吸附能。这项工作中描述的吸附剂可用于应对主要的化学工业挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验