Suppr超能文献

瓦茨-斯托加茨网络和巴拉巴西-阿尔伯特网络中的首次相遇

First encounters on Watts-Strogatz networks and Barabási-Albert networks.

作者信息

Yuan Zhenhua, Chen Yongjin, Gao Long, Peng Junhao

机构信息

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China.

出版信息

Chaos. 2022 Dec;32(12):123114. doi: 10.1063/5.0127521.

Abstract

The Watts-Strogatz networks are important models that interpolate between regular lattices and random graphs, and Barabási-Albert networks are famous models that explain the origin of the scale-free networks. Here, we consider the first encounters between two particles (e.g., prey A and predator B) embedded in the Watts-Strogatz networks and the Barabási-Albert networks. We address numerically the mean first-encounter time (MFET) while the two particles are moving and the mean first-passage time (MFPT) while the prey is fixed, aiming at uncovering the impact of the prey's motion on the encounter time, and the conditions where the motion of the prey would accelerate (or slow) the encounter between the two particles. Different initial conditions are considered. In the case where the two particles start independently from sites that are selected randomly from the stationary distribution, on the Barabási-Albert networks, the MFET is far less than the MFPT, and the impact of prey's motion on the encounter time is enormous, whereas, on the Watts-Strogatz networks (including Erdős-Rényi random networks), the MFET is about 0.5-1 times the MFPT, and the impact of prey's motion on the encounter time is relatively small. We also consider the case where prey A starts from a fixed site and the predator starts from a randomly drawn site and present the conditions where the motion of the prey would accelerate (or slow) the encounter between the two particles. The relation between the MFET (or MFPT) and the average path length is also discussed.

摘要

瓦茨 - 斯托加茨网络是在规则晶格和随机图之间进行插值的重要模型,而巴拉巴西 - 阿尔伯特网络是解释无标度网络起源的著名模型。在此,我们考虑嵌入在瓦茨 - 斯托加茨网络和巴拉巴西 - 阿尔伯特网络中的两个粒子(例如,猎物A和捕食者B)之间的首次相遇。我们通过数值方法求解两个粒子移动时的平均首次相遇时间(MFET)以及猎物固定时的平均首次通过时间(MFPT),旨在揭示猎物运动对相遇时间的影响,以及猎物运动将加速(或减慢)两个粒子相遇的条件。我们考虑了不同的初始条件。在两个粒子从根据平稳分布随机选择的位点独立开始的情况下,在巴拉巴西 - 阿尔伯特网络上,MFET远小于MFPT,猎物运动对相遇时间的影响巨大,而在瓦茨 - 斯托加茨网络(包括厄多斯 - 雷尼随机网络)上,MFET约为MFPT的0.5 - 1倍,猎物运动对相遇时间的影响相对较小。我们还考虑了猎物A从固定位点开始而捕食者从随机抽取的位点开始的情况,并给出了猎物运动将加速(或减慢)两个粒子相遇的条件。此外,还讨论了MFET(或MFPT)与平均路径长度之间的关系。

相似文献

1
First encounters on Watts-Strogatz networks and Barabási-Albert networks.
Chaos. 2022 Dec;32(12):123114. doi: 10.1063/5.0127521.
2
Survival probability of a lazy prey on lattices and complex networks.
Eur Phys J E Soft Matter. 2020 Aug 14;43(8):53. doi: 10.1140/epje/i2020-11979-2.
3
Fixed-points in random Boolean networks: The impact of parallelism in the Barabási-Albert scale-free topology case.
Biosystems. 2016 Dec;150:167-176. doi: 10.1016/j.biosystems.2016.10.003. Epub 2016 Oct 17.
4
Asymptotic entropy of the Gibbs state of complex networks.
Sci Rep. 2021 Jan 11;11(1):311. doi: 10.1038/s41598-020-78626-2.
5
Linear relation on the correlation in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 2):047101. doi: 10.1103/PhysRevE.73.047101. Epub 2006 Apr 3.
6
Multifractal cross-correlation effects in two-variable time series of complex network vertex observables.
Phys Rev E. 2016 Oct;94(4-1):042307. doi: 10.1103/PhysRevE.94.042307. Epub 2016 Oct 12.
7
Coarse graining for synchronization in directed networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056123. doi: 10.1103/PhysRevE.83.056123. Epub 2011 May 25.
9
First encounters on combs.
Phys Rev E. 2019 Dec;100(6-1):062310. doi: 10.1103/PhysRevE.100.062310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验