Suppr超能文献

随机布尔网络中的不动点:巴拉巴西-阿尔伯特无标度拓扑情形下并行性的影响。

Fixed-points in random Boolean networks: The impact of parallelism in the Barabási-Albert scale-free topology case.

作者信息

Moisset de Espanés P, Osses A, Rapaport I

机构信息

Center for Mathematical Modeling (UMI 2807 CNRS), FCFM, Universidad de Chile, Beauchef 851, Santiago, Chile; Center for Biotechnology and Bioengineering, FCFM, Universidad de Chile, Beauchef 851, Santiago, Chile.

Center for Mathematical Modeling (UMI 2807 CNRS), FCFM, Universidad de Chile, Beauchef 851, Santiago, Chile; Departamento de Ingeniería Matemática, FCFM, Universidad de Chile, Beauchef 851, Santiago, Chile.

出版信息

Biosystems. 2016 Dec;150:167-176. doi: 10.1016/j.biosystems.2016.10.003. Epub 2016 Oct 17.

Abstract

Fixed points are fundamental states in any dynamical system. In the case of gene regulatory networks (GRNs) they correspond to stable genes profiles associated to the various cell types. We use Kauffman's approach to model GRNs with random Boolean networks (RBNs). In this paper we explore how the topology affects the distribution of the number of fixed points in randomly generated networks. We also study the size of the basins of attraction of these fixed points if we assume the α-asynchronous dynamics (where every node is updated independently with probability 0≤α≤1). It is well-known that asynchrony avoids the cyclic attractors into which parallel dynamics tends to fall. We observe the remarkable property that, in all our simulations, if for a given RBN with Barabási-Albert topology and α-asynchronous dynamics an initial configuration reaches a fixed point, then every configuration also reaches a fixed point. By contrast, in the parallel regime, the percentage of initial configurations reaching a fixed point (for the same networks) is dramatically smaller. We contrast the results of the simulations on Barabási-Albert networks with the classical Erdös-Rényi model of random networks. Everything indicates that Barabási-Albert networks are extremely robust. Finally, we study the mean and maximum time/work needed to reach a fixed point when starting from randomly chosen initial configurations.

摘要

不动点是任何动力系统中的基本状态。在基因调控网络(GRN)的情况下,它们对应于与各种细胞类型相关的稳定基因谱。我们使用考夫曼的方法,用随机布尔网络(RBN)对基因调控网络进行建模。在本文中,我们探讨了拓扑结构如何影响随机生成网络中不动点数量的分布。如果我们假设α - 异步动力学(其中每个节点以概率0≤α≤1独立更新),我们还研究了这些不动点吸引盆的大小。众所周知,异步避免了并行动力学倾向于陷入的循环吸引子。我们观察到一个显著的特性,即在我们所有的模拟中,如果对于一个具有巴拉巴西 - 阿尔伯特拓扑结构和α - 异步动力学的给定随机布尔网络,一个初始配置达到一个不动点,那么每个配置也会达到一个不动点。相比之下,在并行模式下,(对于相同的网络)达到不动点的初始配置的百分比要小得多。我们将巴拉巴西 - 阿尔伯特网络的模拟结果与经典的随机网络厄多斯 - 雷尼模型的结果进行对比。一切都表明巴拉巴西 - 阿尔伯特网络极其稳健。最后,我们研究了从随机选择的初始配置开始达到不动点所需的平均时间/工作量和最长时间/工作量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验