Mirzaei Simin, Mehrabbeik Mahtab, Rajagopal Karthikeyan, Jafari Sajad, Chen Guanrong
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran.
Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India.
Chaos. 2022 Dec;32(12):123133. doi: 10.1063/5.0117473.
In neuronal network analysis on, for example, synchronization, it has been observed that the influence of interactions between pairwise nodes is essential. This paper further reveals that there exist higher-order interactions among multi-node simplicial complexes. Using a neuronal network of Rulkov maps, the impact of such higher-order interactions on network synchronization is simulated and analyzed. The results show that multi-node interactions can considerably enhance the Rulkov network synchronization, better than pairwise interactions, for involving more and more neurons in the network.
在例如对同步性的神经网络分析中,已经观察到成对节点之间相互作用的影响至关重要。本文进一步揭示了多节点单纯复形之间存在高阶相互作用。利用Rulkov映射的神经网络,模拟并分析了这种高阶相互作用对网络同步性的影响。结果表明,多节点相互作用能够显著增强Rulkov网络的同步性,比成对相互作用更好,因为它能使网络中越来越多的神经元参与进来。