Research Unit of Condensed Matter, Electronics and Signal Processing, Department of Physics, University of Dschang, P.O. Box 67, Dschang, Cameroon.
Laboratoire d'Automatique et d'Informatique Appliquée, Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, P.O. Box 134, Bandjoun, Cameroon.
Chaos. 2022 Dec;32(12):123126. doi: 10.1063/5.0124204.
The Lyapunov exponent method is generally used for classifying hyperchaotic, chaotic, and regular dynamics based on the equations modeling the system. However, several systems do not benefit from appropriate modeling underlying their dynamic behaviors. Therefore, having methods for classifying hyperchaotic, chaotic, and regular dynamics using only the observational data generated either by the theoretical or the experimental systems is crucial. In this paper, we use single nonlinear node delay-based reservoir computers to separate hyperchaotic, chaotic, and regular dynamics. We show that their classification capabilities are robust with an accuracy of up to 99.61% and 99.03% using the Mackey-Glass and the optoelectronic oscillator delay-based reservoir computers, respectively. Moreover, we demonstrate that the reservoir computers trained with the two-dimensional Hénon-logistic map can classify the dynamical state of another system (for instance, the two-dimensional sine-logistic modulation map). Our solution extends the state-of-the-art machine learning and deep learning approaches for chaos detection by introducing the detection of hyperchaotic signals.
李雅普诺夫指数方法通常用于根据系统模型方程对超混沌、混沌和规则动力学进行分类。然而,一些系统的动态行为并不适合于适当的建模。因此,使用仅基于理论或实验系统生成的观测数据对超混沌、混沌和规则动力学进行分类的方法至关重要。在本文中,我们使用基于单个非线性节点延迟的储层计算机来分离超混沌、混沌和规则动力学。我们表明,它们的分类能力具有鲁棒性,使用麦基-格拉斯和光电振荡器延迟储层计算机的准确率分别高达 99.61%和 99.03%。此外,我们还证明了使用二维 Henon-logistic 映射训练的储层计算机可以对另一个系统(例如二维正弦-logistic 调制映射)的动态状态进行分类。我们的解决方案通过引入对超混沌信号的检测,扩展了现有的机器学习和深度学习方法在混沌检测方面的应用。