School of Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China.
School of Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China.
Ecotoxicol Environ Saf. 2023 Jan 15;250:114467. doi: 10.1016/j.ecoenv.2022.114467. Epub 2022 Dec 30.
Rapid economic development and industrialization may include environmentally harmful human activities that cause heavy-metal accumulation in soils, ultimately threatening the quality of the soil environment and human health. Therefore, accurate identification of pollution sources is an important weapon in efforts to control and prevent pollution. The self-organizing map (SOM) method is widely used in pollution source identification because of its capacity for visualization of high-dimensional data. The SOM ignores the graph structure relationship among chemical elements in soils; the SOM analysis of pollution sources has high uncertainty. Here, we propose a new analysis method, i.e., the graph convolutional self-organizing map (GCSOM), which uses a graph convolutional network (GCN) to extract the graph structure relationship among the chemical elements in soils, then performs data visualization using an SOM. We compared the performances of GCSOM and SOM, then assessed the pollution source characteristics of trace metal(loid)s (TMs, mostly heavy metals) in Jiangmen City using the GCSOM. Our experimental results showed that the GCSOM is superior to the SOM for identification of TM sources, while the TMs in the soil of Jiangmen originate from three main sources: agricultural activities (mainly in Taishan City, Jiangmen), traffic emissions (mainly in Xinhui and Pengjiang Districts), and industrial activities (mainly in Xinhui District). The risk assessment indicated that the risk of all TMs was within threshold.
快速的经济发展和工业化可能包括对环境有害的人类活动,这些活动导致重金属在土壤中积累,最终威胁到土壤环境和人类健康的质量。因此,准确识别污染源是控制和预防污染的重要手段。自组织映射 (SOM) 方法因其能够可视化高维数据而被广泛应用于污染源识别。SOM 忽略了土壤中化学元素之间的图形结构关系;SOM 分析污染源具有很高的不确定性。在这里,我们提出了一种新的分析方法,即图卷积自组织映射 (GCSOM),它使用图卷积网络 (GCN) 提取土壤中化学元素之间的图结构关系,然后使用 SOM 进行数据可视化。我们比较了 GCSOM 和 SOM 的性能,然后使用 GCSOM 评估了江门市痕量金属(TM,主要是重金属)的污染源特征。我们的实验结果表明,GCSOM 在识别 TM 源方面优于 SOM,而江门市土壤中的 TM 主要来自三个主要来源:农业活动(主要在台山市)、交通排放(主要在新会区和蓬江区)和工业活动(主要在新会区)。风险评估表明,所有 TM 的风险均在阈值范围内。