Department of Biosystems Engineering, University of São Paulo, Pirassununga, Brazil.
Comput Biol Med. 2023 Feb;153:106481. doi: 10.1016/j.compbiomed.2022.106481. Epub 2022 Dec 28.
Mathematical Oncology has emerged as a research field that applies either continuous or discrete models to mathematically describe cancer-related phenomena. Such methods are usually expressed in terms of differential equations, however tumor composition involves specific cellular structure and can demonstrate probabilistic nature, often requiring tailor-made approaches. In this context, cell-based models allow monitoring independent single parameters, which might vary in both time and space. By relying on extant tumor growth models in the literature, this study introduces cellular-automata simulation strategies that admit heterogeneous cell population while capturing both single-cell and cluster-cell behaviors. In this agent-based computational model, tumor cells are limited to follow four possible courses of action, namely: proliferation, migration, apoptosis or quiescence. Despite the apparent simplicity of those actions, the model can represent different complex tumor features depending on parameter settings. This study virtualized five different scenarios, showcasing model capabilities of representing tumor dynamics including alternate dormancy periods, cell death instability and cluster formation. Implementation techniques are also explored together with prospective model expansion towards deterministic features. The proposed stochastic cellular automaton model is able to effectively simulate different scenarios regarding tumor growth effectively, figuring as an interesting tool for in silico modeling, with promising capabilities of expansion to support research in mathematical oncology, thus improving diagnosis tools and/or personalized treatment.
数学肿瘤学已经成为一个研究领域,它应用连续或离散模型来数学描述与癌症相关的现象。这些方法通常用微分方程来表示,然而肿瘤的组成涉及到特定的细胞结构,并可能表现出概率性质,通常需要定制的方法。在这种情况下,基于细胞的模型可以监测独立的单个参数,这些参数在时间和空间上可能会有所不同。本研究依赖于文献中的现有肿瘤生长模型,引入了细胞自动机模拟策略,允许异质细胞群体存在,同时捕捉单细胞和细胞簇的行为。在这个基于代理的计算模型中,肿瘤细胞只能进行四种可能的活动,即增殖、迁移、凋亡或静止。尽管这些活动看起来很简单,但模型可以根据参数设置来表示不同的复杂肿瘤特征。本研究虚拟了五个不同的场景,展示了模型代表肿瘤动力学的能力,包括替代休眠期、细胞死亡不稳定性和细胞簇形成。还探讨了实现技术以及向确定性特征的模型扩展的前景。所提出的随机细胞自动机模型能够有效地模拟不同的肿瘤生长场景,是一种有趣的计算机模拟工具,具有扩展以支持数学肿瘤学研究的潜力,从而改进诊断工具和/或个性化治疗。