Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China.
J Colloid Interface Sci. 2023 Apr;635:208-220. doi: 10.1016/j.jcis.2022.12.152. Epub 2022 Dec 29.
Transition metal alloys have emerged as promising catalysts for oxygen reduction/evolution reactions (ORR/OER) because of their intermetallic synergy and tunable redox properties. However, for alloy nanoparticles, it is quite challenging to suppress the self-aggregation and promote the bifunctional activity. Anchoring alloys in heteroatoms-doped carbon matrix with excellent electro-conductibility is a powerful strategy to form strongly-coupled alloy-carbon nanohybrids. Here, highly-dispersed NiFe alloys are evenly in-situ anchored on the surface of Co, N co-doped carbon nanotubes (NiFe/Co-N@CNTs) via a gravity-guided chemical vapor deposition and self-assembly strategy. Stably-structured NiFe/Co-N@CNTs possesses a tubular skeleton with diameters of 80-100 nm and a hydrophilic surface. For ORR, half-wave potential of NiFe/Co-N@CNTs (0.87 V vs RHE) is higher than that of Pt/C (0.85 V). Strong synergies between NiFe alloys and Co-N species facilitate the charge transfer on one-dimensional conductive structure to boost the 4e ORR kinetics. For OER, NiFe/Co-N@CNTs has a lower overpotential (300 mV) than RuO (400 mV) at 10 mA cm due to in-situ formation of highly-active NiOOH/FeOOH species (as indicated by in-situ X-ray diffraction) at the catalytic sites on NiFe alloy. Rechargeable Zn-air battery (ZAB) with NiFe/Co-N@CNTs-based air-cathode exhibits promising open-circuit potential (1.52 V) and charge-discharge cycling stability (350 h). This alloy-carbon integrating strategy is meaningful for promoting dispersion, activity and stability of non-noble metal alloys for oxygen electrocatalysis.
过渡金属合金因其具有金属间协同作用和可调氧化还原性质而成为有前途的氧还原/析氧反应 (ORR/OER) 催化剂。然而,对于合金纳米粒子,抑制自聚集和促进双功能活性是一项具有挑战性的任务。将合金锚定在具有优异导电性的杂原子掺杂碳基质中是形成强耦合合金-碳纳米杂化物的有力策略。在这里,通过重力引导的化学气相沉积和自组装策略,高度分散的 NiFe 合金均匀地原位锚定在 Co、N 共掺杂碳纳米管 (NiFe/Co-N@CNTs) 的表面上。稳定结构的 NiFe/Co-N@CNTs 具有 80-100nm 的管状骨架和亲水表面。对于 ORR,NiFe/Co-N@CNTs 的半波电位 (0.87V 相对于 RHE) 高于 Pt/C (0.85V)。NiFe 合金和 Co-N 物种之间的强协同作用促进了一维导电结构上的电荷转移,从而促进了 4e ORR 动力学。对于 OER,由于在 NiFe 合金的催化位点上原位形成了高活性的 NiOOH/FeOOH 物种(如原位 X 射线衍射所示),NiFe/Co-N@CNTs 在 10mAcm 时的过电位(300mV)低于 RuO(400mV)。基于 NiFe/Co-N@CNTs 的空气阴极的可充电锌空气电池 (ZAB) 表现出有前途的开路电位 (1.52V) 和充放电循环稳定性 (350h)。这种合金-碳整合策略对于促进非贵金属合金在氧电催化中的分散性、活性和稳定性具有重要意义。