Suppr超能文献

负载镍铁合金纳米颗粒的氮掺杂碳纳米管管状组件作为可充电锌空气电池的高效双功能催化剂。

Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries.

作者信息

Xie Xiaoying, Shang Lu, Shi Run, Waterhouse Geoffrey I N, Zhao Jiaqi, Zhang Tierui

机构信息

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand.

出版信息

Nanoscale. 2020 Jun 25;12(24):13129-13136. doi: 10.1039/d0nr02486d.

Abstract

Enormous research effort is presently being directed towards the discovery of low cost bifunctional electrocatalysts capable of efficiently driving the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), with such bifunctional electrocatalysts being particularly sought after for rechargeable metal-air batteries. Herein, we report the successful synthesis of a highly efficient bifuctional ORR/OER electrocatalyst, comprising tubular assemblies of 20-40 nm N-doped carbon nanotubes containing NiFe alloy nanoparticles (denoted herein as TA-NiFe@NCNT). To synthesize TA-NiFe@NCNT, we first prepared g-C3N4 nanotubes with a diameter ∼200 nm as a sacrificial template and nitrogen source, then decorated the nanotubes with NiFe-layered double hydroxide nanoparticles (NiFe-LDH). The NiFe-LDH/g-C3N4 composite obtained was then coated with a thin layer of glucose (an additional carbon source), then the resulting NiFe-LDH/g-C3N4@Glu composite was pyrolyzed at 900 °C in N2. The obtained TA-NiFe@NCNT product exhibited a low overpotential of only 310 mV at a current density of 10 mA cm-2 during OER in 0.1 M KOH (cf. 401 mV for IrO2) and an ORR activity in 0.1 M KOH (onset potential of 0.93 V and half-wave potential of 0.81 V vs. RHE) comparable to a commercial Pt/C catalyst (onset potential of 0.99 V and half-wave potential of 0.82 V vs. RHE). The remarkable bifunctional performance of TA-NiFe@NCNT can be attributed to the excellent OER and ORR activities of NiFe alloy nanoparticles and NCNTs, respectively, as well as the high porosity and excellent conductivity of the electrocatalyst that benefitted mass and electron transfer processes, respectively. A custom-built rechargeable zinc-air battery constructed using TA-NiFe@NCNT at the air electrode delivered a lower charge-discharge voltage gap (0.92 V) and longer cycling lifetime (170 h at 25 mA cm-2) than a battery fabricated using a mixture of IrO2 and Pt/C as air electrode catalysts.

摘要

目前,大量的研究工作致力于发现能够有效驱动氧还原反应(ORR)和析氧反应(OER)的低成本双功能电催化剂,这种双功能电催化剂在可充电金属空气电池中尤其受到青睐。在此,我们报告了一种高效双功能ORR/OER电催化剂的成功合成,该催化剂由含有NiFe合金纳米颗粒的20 - 40 nm N掺杂碳纳米管的管状组件组成(在此表示为TA-NiFe@NCNT)。为了合成TA-NiFe@NCNT,我们首先制备了直径约200 nm的g-C3N4纳米管作为牺牲模板和氮源,然后用NiFe层状双氢氧化物纳米颗粒(NiFe-LDH)修饰这些纳米管。然后将得到的NiFe-LDH/g-C3N4复合材料用一层薄的葡萄糖(额外的碳源)包覆,接着将得到的NiFe-LDH/g-C3N4@Glu复合材料在900℃的N2中热解。所获得的TA-NiFe@NCNT产物在0.1 M KOH中进行OER时,在电流密度为10 mA cm-2时仅表现出310 mV的低过电位(相比之下,IrO2为401 mV),并且在0.1 M KOH中的ORR活性(相对于RHE的起始电位为0.93 V,半波电位为0.81 V)与商业Pt/C催化剂相当(相对于RHE的起始电位为0.99 V,半波电位为0.82 V)。TA-NiFe@NCNT卓越的双功能性能可分别归因于NiFe合金纳米颗粒和NCNT优异的OER和ORR活性,以及电催化剂的高孔隙率和优异的导电性,它们分别有利于质量和电子转移过程。使用TA-NiFe@NCNT作为空气电极构建的定制可充电锌空气电池,与使用IrO2和Pt/C混合物作为空气电极催化剂制造的电池相比,具有更低的充放电电压间隙(0.92 V)和更长的循环寿命(在25 mA cm-2下为170 h)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验