Suppr超能文献

开发一种用于评估夜间昆虫丰度和多样性的双极化天气监视雷达观测的无监督层次聚类分析方法。

The development of an unsupervised hierarchical clustering analysis of dual-polarization weather surveillance radar observations to assess nocturnal insect abundance and diversity.

作者信息

Lukach Maryna, Dally Thomas, Evans William, Hassall Christopher, Duncan Elizabeth J, Bennett Lindsay, Addison Freya I, Kunin William E, Chapman Jason W, Neely Ryan R

机构信息

National Centre for Atmospheric Science and the School of Earth and Environment University of Leeds 71-75 Clarendon Rd, Woodhouse Leeds LS2 9PH UK.

School of Biology, Faculty of Biological Sciences University of Leeds Woodhouse Lane Leeds LS2 9JT UK.

出版信息

Remote Sens Ecol Conserv. 2022 Oct;8(5):698-716. doi: 10.1002/rse2.270. Epub 2022 May 24.

Abstract

Contemporary analyses of insect population trends are based, for the most part, on a large body of heterogeneous and short-term datasets of diurnal species that are representative of limited spatial domains. This makes monitoring changes in insect biomass and biodiversity difficult. What is needed is a method for monitoring that provides a consistent, high-resolution picture of insect populations through time over large areas during day and night. Here, we explore the use of X-band weather surveillance radar (WSR) for the study of local insect populations using a high-quality, multi-week time series of nocturnal moth light trapping data. Specifically, we test the hypotheses that (i) unsupervised data-driven classification algorithms can differentiate meteorological and biological phenomena, (ii) the diversity of the classes of bioscatterers are quantitatively related to the diversity of insects as measured on the ground and (iii) insect abundance measured at ground level can be predicted quantitatively based on dual-polarization Doppler WSR variables. Adapting the quasi-vertical profile analysis method and data clustering techniques developed for the analysis of hydrometeors, we demonstrate that our bioscatterer classification algorithm successfully differentiates bioscatterers from hydrometeors over a large spatial scale and at high temporal resolutions. Furthermore, our results also show a clear relationship between biological and meteorological scatterers and a link between the abundance and diversity of radar-based bioscatterer clusters and that of nocturnal aerial insects. Thus, we demonstrate the potential utility of this approach for landscape scale monitoring of biodiversity.

摘要

当代对昆虫种群趋势的分析大多基于大量异质且短期的昼行性物种数据集,这些数据集仅代表有限的空间区域。这使得监测昆虫生物量和生物多样性的变化变得困难。我们需要一种监测方法,能够在白天和夜晚的大面积区域内,随时间提供昆虫种群一致的高分辨率图像。在此,我们利用高质量、多周的夜间蛾类灯光诱捕数据时间序列,探索使用X波段天气监视雷达(WSR)研究当地昆虫种群。具体而言,我们检验以下假设:(i)无监督数据驱动分类算法能够区分气象和生物现象;(ii)生物散射体类别的多样性与地面测量的昆虫多样性存在定量关系;(iii)基于地面测量的昆虫丰度可以根据双极化多普勒WSR变量进行定量预测。通过采用为分析水凝物而开发的准垂直剖面分析方法和数据聚类技术,我们证明我们的生物散射体分类算法在大空间尺度和高时间分辨率下成功区分了生物散射体和水凝物。此外,我们的结果还显示了生物和气象散射体之间的明确关系,以及基于雷达的生物散射体集群的丰度和多样性与夜间空中昆虫的丰度和多样性之间的联系。因此,我们证明了这种方法在景观尺度生物多样性监测中的潜在效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e33/9790603/ea8f849d44ba/RSE2-8-698-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验