Suppr超能文献

光子纠缠通过阿尔茨海默病脑组织传输时的退相干。

Decoherence of photon entanglement by transmission through brain tissue with Alzheimer's disease.

作者信息

Galvez E J, Sharma B, Williams F K, You C-J, Khajavi B, Castrillon J, Shi L, Mamani S, Sordillo L A, Zhang L, Alfano R R

机构信息

Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, New York 13346, USA.

Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.

出版信息

Biomed Opt Express. 2022 Nov 23;13(12):6621-6630. doi: 10.1364/BOE.474469. eCollection 2022 Dec 1.

Abstract

The generation, manipulation and quantification of non-classical light, such as quantum-entangled photon pairs, differs significantly from methods with classical light. Thus, quantum measures could be harnessed to give new information about the interaction of light with matter. In this study we investigate if quantum entanglement can be used to diagnose disease. In particular, we test whether brain tissue from subjects suffering from Alzheimer's disease can be distinguished from healthy tissue. We find that this is indeed the case. Polarization-entangled photons traveling through brain tissue lose their entanglement via a decohering scattering interaction that gradually renders the light in a maximally mixed state. We found that in thin tissue samples (between 120 and 600 micrometers) photons decohere to a distinguishable lesser degree in samples with Alzheimer's disease than in healthy-control ones. Thus, it seems feasible that quantum measures of entangled photons could be used as a means to identify brain samples with the neurodegenerative disease.

摘要

非经典光(如量子纠缠光子对)的产生、操控和量化与经典光的方法有显著不同。因此,量子测量可用于获取有关光与物质相互作用的新信息。在本研究中,我们探究量子纠缠是否可用于疾病诊断。具体而言,我们测试了能否区分阿尔茨海默病患者的脑组织与健康组织。我们发现确实可以。穿过脑组织的偏振纠缠光子通过退相干散射相互作用失去其纠缠,这种相互作用会逐渐使光处于最大混合态。我们发现,在薄组织样本(120至600微米之间)中,与健康对照样本相比,阿尔茨海默病样本中的光子退相干程度较小,仍可区分。因此,纠缠光子的量子测量似乎有可能作为识别患有神经退行性疾病的脑样本的一种手段。

相似文献

2
Photon Entanglement Through Brain Tissue.光子纠缠穿透脑组织。
Sci Rep. 2016 Dec 20;6:37714. doi: 10.1038/srep37714.
6
Entangled Two-Photon Absorption Spectroscopy.纠缠双光子吸收光谱学。
Acc Chem Res. 2018 Sep 18;51(9):2207-2214. doi: 10.1021/acs.accounts.8b00173. Epub 2018 Sep 4.
8
Entangled Photon Spectroscopy.纠缠光子光谱学。
Acc Chem Res. 2022 Apr 5;55(7):991-1003. doi: 10.1021/acs.accounts.1c00687. Epub 2022 Mar 21.
10
Stimulated emission of polarization-entangled photons.极化纠缠光子的受激辐射。
Nature. 2001 Aug 30;412(6850):887-90. doi: 10.1038/35091014.

引用本文的文献

1
Introduction to the Optics and the Brain 2023 feature issue.《光学与大脑2023》特刊简介。
Biomed Opt Express. 2024 Mar 4;15(4):2110-2113. doi: 10.1364/BOE.517678. eCollection 2024 Apr 1.

本文引用的文献

1
4
The neuropathological diagnosis of Alzheimer's disease.阿尔茨海默病的神经病理学诊断。
Mol Neurodegener. 2019 Aug 2;14(1):32. doi: 10.1186/s13024-019-0333-5.
5
Transmission of classically entangled beams through mouse brain tissue.经典纠缠光束在小鼠脑组织中的传输。
J Biophotonics. 2018 Dec;11(12):e201800096. doi: 10.1002/jbio.201800096. Epub 2018 Sep 5.
6
Photon Entanglement Through Brain Tissue.光子纠缠穿透脑组织。
Sci Rep. 2016 Dec 20;6:37714. doi: 10.1038/srep37714.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验