Rabby Md Raisul Islam, Ahmed Zabed Bin, Paul Gobindo Kumar, Chowdhury Nafisa Nusrat, Akter Fatema, Razu Mamudul Hasan, Karmaker Pranab, Khan Mala
Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh.
Biochem Res Int. 2022 Dec 21;2022:4598937. doi: 10.1155/2022/4598937. eCollection 2022.
Cellulase is a biocatalyst that hydrolyzes cellulosic biomass and is considered a major group of industrial enzymes for its applications. Extensive work has been done on microbial cellulase but fungi are considered a novel strain for their maximum cellulase production. Production cost and novel microbial strains are major challenges for its improvement where cheap agro wastes can be essential sources of cellulose as substrates. The researcher searches for more cellulolytic microbes from natural sources but the production level of isolated strains is comparatively low. So genetic modification or mutation can be employed for large-scale cellulase production before optimization. After genetic modification than molecular modeling can be evaluated for substrate molecule's binding affinity. In this review, we focus not only on the conventional methods of cellulase production but also on modern biotechnological approaches applied to cellulase production by a sequential study on common cellulase-producing microbes, modified microbes, culture media, carbon sources, substrate pretreatment process, and the importance of optimum pH and temperature on fermentation. In this review, we also compare different cellulase activity determination methods. As a result, this review provides insights into the interrelationship between the characteristics of optimizing different culture conditions, genetic modification, and enzyme modeling for the production of cellulase enzymes, which may aid in the advancement of large-scale integrated enzyme manufacturing of substrate-specific enzymes.
纤维素酶是一种能水解纤维素生物质的生物催化剂,因其应用而被视为主要的工业酶类别。关于微生物纤维素酶已开展了大量工作,但真菌被认为是产生纤维素酶最多的新型菌株。生产成本和新型微生物菌株是其改进的主要挑战,廉价的农业废弃物可能是作为底物的纤维素的重要来源。研究人员从自然来源寻找更多的纤维素分解微生物,但分离菌株的生产水平相对较低。因此,在优化之前可采用基因改造或诱变来进行大规模纤维素酶生产。基因改造后,可评估分子建模对底物分子的结合亲和力。在本综述中,我们不仅关注纤维素酶生产的传统方法,还关注通过对常见纤维素酶产生微生物、改造后的微生物、培养基、碳源、底物预处理过程以及最佳pH和温度对发酵的重要性进行顺序研究而应用于纤维素酶生产的现代生物技术方法。在本综述中,我们还比较了不同的纤维素酶活性测定方法。因此,本综述深入探讨了优化不同培养条件的特性、基因改造和用于生产纤维素酶的酶建模之间的相互关系,这可能有助于推进大规模集成生产底物特异性酶的酶制造。