Zhai Haiwei, Jin Xiaowei, Minnick Grayson, Rosenbohm Jordan, Hafiz Mohammed Abdul Haleem, Yang Ruiguo, Meng Fanben
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
Small Sci. 2022 Nov;2(11). doi: 10.1002/smsc.202200051. Epub 2022 Sep 14.
A current challenge in three-dimensional (3D) bioprinting of skin equivalents is to recreate the distinct basal and suprabasal layers and to promote their direct interactions. Such a structural arrangement is essential to establish 3D stratified epidermis disease models, such as for the autoimmune skin disease pemphigus vulgaris (PV), which targets the cell-cell junctions at the interface of the basal and suprabasal layers. Inspired by epithelial regeneration in wound healing, we develop a method that combines 3D bioprinting and spatially guided self-reorganization of keratinocytes to recapture the fine structural hierarchy that lies in the deep layers of the epidermis. Here, keratinocyte-laden fibrin hydrogels are bioprinted to create geographical cues, guiding dynamic self-reorganization of cells through collective migration, keratinocyte differentiation and vertical expansion. This process results in a region of self-organized multilayers (SOMs) that contain the basal to suprabasal transition, marked by the expressed levels of different types of keratins that indicate differentiation. Finally, we demonstrate the reconstructed skin tissue as an in vitro platform to study the pathogenic effects of PV and observe a significant difference in cell-cell junction dissociation from PV antibodies in different epidermis layers, indicating their applications in the preclinical test of possible therapies.
当前,在皮肤等效物的三维(3D)生物打印中面临的一个挑战是重现不同的基底层和基底层以上的层,并促进它们之间的直接相互作用。这种结构安排对于建立3D分层表皮疾病模型至关重要,例如针对自身免疫性皮肤病寻常型天疱疮(PV)的模型,该疾病靶向基底层和基底层以上层界面处的细胞间连接。受伤口愈合过程中上皮再生的启发,我们开发了一种方法,将3D生物打印与角质形成细胞的空间引导自重组相结合,以重现表皮深层中的精细结构层次。在这里,载有角质形成细胞的纤维蛋白水凝胶通过生物打印创建地理线索,通过集体迁移、角质形成细胞分化和垂直扩展来引导细胞的动态自重组。这个过程产生了一个自组织多层区域(SOMs),其中包含从基底层到基底层以上的过渡,以不同类型角蛋白的表达水平为标志,这些角蛋白的表达水平表明了分化情况。最后,我们证明了重建的皮肤组织作为一个体外平台,可用于研究PV的致病作用,并观察到不同表皮层中PV抗体导致的细胞间连接解离存在显著差异,这表明它们在可能疗法的临床前测试中的应用价值。