Suppr超能文献

通过整合大数据分析社会决定因素和初级保健发病率对人群健康结果的影响:一项研究方案。

Analysis of the impact of social determinants and primary care morbidity on population health outcomes by combining big data: A research protocol.

作者信息

Couso-Viana Sabela, Bentué-Martínez Carmen, Delgado-Martín María Victoria, Cabeza-Irigoyen Elena, León-Latre Montserrat, Concheiro-Guisán Ana, Rodríguez-Álvarez María Xosé, Román-Rodríguez Miguel, Roca-Pardiñas Javier, Zúñiga-Antón María, García-Flaquer Ana, Pericàs-Pulido Pau, Sánchez-Recio Raquel, González-Álvarez Beatriz, Rodríguez-Pastoriza Sara, Gómez-Gómez Irene, Motrico Emma, Jiménez-Murillo José Luís, Rabanaque Isabel, Clavería Ana

机构信息

I-Saúde Group, South Galicia Health Research Institute (Instituto de Investigación Sanitaria Galicia Sur), SERGAS-UVIGO, Vigo, Spain.

Department of Geography, Aragon University Environmental Sciences Research Institute (Instituto Universitario de Investigación en Ciencias Ambientales de Aragón/IUCA), University of Zaragoza, Zaragoza, Spain.

出版信息

Front Med (Lausanne). 2022 Dec 16;9:1012437. doi: 10.3389/fmed.2022.1012437. eCollection 2022.

Abstract

BACKGROUND

In recent years, different tools have been developed to facilitate analysis of social determinants of health (SDH) and apply this to health policy. The possibility of generating predictive models of health outcomes which combine a wide range of socioeconomic indicators with health problems is an approach that is receiving increasing attention. Our objectives are twofold: (1) to predict population health outcomes measured as hospital morbidity, taking primary care (PC) morbidity adjusted for SDH as predictors; and (2) to analyze the geographic variability of the impact of SDH-adjusted PC morbidity on hospital morbidity, by combining data sourced from electronic health records and selected operations of the National Statistics Institute ().

METHODS

The following will be conducted: a qualitative study to select socio-health indicators using RAND methodology in accordance with SDH frameworks, based on indicators published by the in selected operations; and a quantitative study combining two large databases drawn from different Spain's Autonomous Regions (ARs) to enable hospital morbidity to be ascertained, i.e., PC electronic health records and the minimum basic data set (MBDS) for hospital discharges. These will be linked to socioeconomic indicators, previously selected by geographic unit. The outcome variable will be hospital morbidity, and the independent variables will be age, sex, PC morbidity, geographic unit, and socioeconomic indicators.

ANALYSIS

To achieve the first objective, predictive models will be used, with a test-and-training technique, fitting multiple logistic regression models. In the analysis of geographic variability, penalized mixed models will be used, with geographic units considered as random effects and independent predictors as fixed effects.

DISCUSSION

This study seeks to show the relationship between SDH and population health, and the geographic differences determined by such determinants. The main limitations are posed by the collection of data for healthcare as opposed to research purposes, and the time lag between collection and publication of data, sampling errors and missing data in registries and surveys. The main strength lies in the project's multidisciplinary nature (family medicine, pediatrics, public health, nursing, psychology, engineering, geography).

摘要

背景

近年来,已开发出不同工具以促进对健康的社会决定因素(SDH)的分析并将其应用于卫生政策。生成结合广泛社会经济指标与健康问题的健康结果预测模型的可能性是一种正受到越来越多关注的方法。我们的目标有两个:(1)以经SDH调整的初级保健(PC)发病率为预测指标,预测以医院发病率衡量的人群健康结果;(2)通过结合来自电子健康记录和国家统计局()选定业务的数据,分析经SDH调整的PC发病率对医院发病率影响的地理变异性。

方法

将开展以下工作:一项定性研究,根据SDH框架,使用兰德方法,基于在选定业务中由 公布的指标来选择社会健康指标;以及一项定量研究,结合从西班牙不同自治区(ARs)获取的两个大型数据库,以确定医院发病率,即PC电子健康记录和医院出院的最低基本数据集(MBDS)。这些将与先前按地理单元选定的社会经济指标相联系。结果变量将是医院发病率,自变量将是年龄、性别、PC发病率、地理单元和社会经济指标。

分析

为实现第一个目标,将使用预测模型,采用测试与训练技术,拟合多重逻辑回归模型。在地理变异性分析中,将使用惩罚混合模型,将地理单元视为随机效应,将独立预测指标视为固定效应。

讨论

本研究旨在展示SDH与人群健康之间的关系,以及此类决定因素所确定的地理差异。主要限制在于为医疗保健而非研究目的收集数据,以及数据收集与发布之间的时间滞后、登记处和调查中的抽样误差和缺失数据。主要优势在于该项目的多学科性质(家庭医学、儿科学、公共卫生、护理、心理学、工程学、地理学)。

相似文献

2
Scoping review: national monitoring frameworks for social determinants of health and health equity.
Glob Health Action. 2016 Feb 5;9:28831. doi: 10.3402/gha.v9.28831. eCollection 2016.
4
Social determinants and emergency department utilization: Findings from the Veterans Health Administration.
Am J Emerg Med. 2020 Sep;38(9):1904-1909. doi: 10.1016/j.ajem.2020.05.078. Epub 2020 May 27.
6
10
Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
Scand J Work Environ Health. 2018 Jan 1;44(1):108-110. doi: 10.5271/sjweh.3698. Epub 2017 Dec 8.

本文引用的文献

1
Socioeconomic Inequalities in COVID-19 in a European Urban Area: Two Waves, Two Patterns.
Int J Environ Res Public Health. 2021 Jan 30;18(3):1256. doi: 10.3390/ijerph18031256.
2
Delphi Technique in Health Sciences: A Map.
Front Public Health. 2020 Sep 22;8:457. doi: 10.3389/fpubh.2020.00457. eCollection 2020.
3
Environmental determinants of population health in urban settings. A systematic review.
BMC Public Health. 2020 Jun 3;20(1):853. doi: 10.1186/s12889-020-08905-0.
4
[Deprivation index by enumeration district in Spain, 2011].
Gac Sanit. 2021 Mar-Apr;35(2):113-122. doi: 10.1016/j.gaceta.2019.10.008. Epub 2020 Feb 1.
5
Screening Children for Social Determinants of Health: A Systematic Review.
Pediatrics. 2019 Oct;144(4). doi: 10.1542/peds.2019-1622. Epub 2019 Sep 23.
7
Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse.
J Med Internet Res. 2018 May 29;20(5):e185. doi: 10.2196/jmir.9134.
8
Social determinants of mental disorders and the Sustainable Development Goals: a systematic review of reviews.
Lancet Psychiatry. 2018 Apr;5(4):357-369. doi: 10.1016/S2215-0366(18)30060-9.
9
The impact of transitional care programs on health services utilization in community-dwelling older adults: a systematic review.
JBI Database System Rev Implement Rep. 2018 Feb;16(2):345-384. doi: 10.11124/JBISRIR-2017-003486.
10
The Experience of Implementing Urban HEART Barcelona: a Tool for Action.
J Urban Health. 2018 Oct;95(5):647-661. doi: 10.1007/s11524-017-0194-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验