Suppr超能文献

脂质组学数据分析中的脂质网络和分馏分析揭示了酶的失调和机制改变。

Lipid network and moiety analysis for revealing enzymatic dysregulation and mechanistic alterations from lipidomics data.

机构信息

LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.

Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.

出版信息

Brief Bioinform. 2023 Jan 19;24(1). doi: 10.1093/bib/bbac572.

Abstract

Lipidomics is of growing importance for clinical and biomedical research due to many associations between lipid metabolism and diseases. The discovery of these associations is facilitated by improved lipid identification and quantification. Sophisticated computational methods are advantageous for interpreting such large-scale data for understanding metabolic processes and their underlying (patho)mechanisms. To generate hypothesis about these mechanisms, the combination of metabolic networks and graph algorithms is a powerful option to pinpoint molecular disease drivers and their interactions. Here we present lipid network explorer (LINEX$^2$), a lipid network analysis framework that fuels biological interpretation of alterations in lipid compositions. By integrating lipid-metabolic reactions from public databases, we generate dataset-specific lipid interaction networks. To aid interpretation of these networks, we present an enrichment graph algorithm that infers changes in enzymatic activity in the context of their multispecificity from lipidomics data. Our inference method successfully recovered the MBOAT7 enzyme from knock-out data. Furthermore, we mechanistically interpret lipidomic alterations of adipocytes in obesity by leveraging network enrichment and lipid moieties. We address the general lack of lipidomics data mining options to elucidate potential disease mechanisms and make lipidomics more clinically relevant.

摘要

脂质组学对于临床和生物医学研究变得越来越重要,因为脂质代谢与许多疾病之间存在关联。脂质代谢与疾病之间存在关联的发现得益于脂质鉴定和定量技术的提高。复杂的计算方法对于解释这种大规模数据以了解代谢过程及其潜在(病理)机制是有利的。为了生成关于这些机制的假设,代谢网络和图算法的结合是确定分子疾病驱动因素及其相互作用的有力选择。在这里,我们提出了脂质网络探索器 (LINEX$^2$),这是一个脂质网络分析框架,为脂质成分变化的生物学解释提供了动力。通过整合来自公共数据库的脂质代谢反应,我们生成了特定于数据集的脂质相互作用网络。为了帮助解释这些网络,我们提出了一种富集图算法,该算法可以根据脂质组学数据推断出酶活性的变化及其多特异性。我们的推断方法成功地从敲除数据中恢复了 MBOAT7 酶。此外,我们通过利用网络富集和脂质部分来从机制上解释肥胖症中脂肪细胞的脂质组学改变。我们解决了阐明潜在疾病机制和使脂质组学更具临床相关性的脂质组学数据挖掘选项的普遍缺乏问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09ad/9851308/a7fdd0cffa40/bbac572ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验