Li Chengping, Pfeifer Kristina, Luo Xianlin, Melinte Georgian, Wang Jinsong, Zhang Zhengfu, Zhang Yingjie, Dong Peng, Sarapulova Angelina, Ehrenberg Helmut, Dsoke Sonia
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
ChemSusChem. 2023 Apr 6;16(7):e202202281. doi: 10.1002/cssc.202202281. Epub 2023 Feb 13.
Sodium-ion and potassium-ion batteries (NIBs and KIBs) are considered promising alternatives to replace lithium-ion batteries (LIBs) in energy storage applications due to the natural abundance and low cost of Na and K. Nevertheless, a critical challenge is that the large size of Na /K leads to a huge volume change of the hosting material during electrochemical cycling, resulting in rapid capacity decay. Among negative candidates for alkali-metal-ion batteries, SnS is attractive due to the competitively high specific capacity, low redox potential and high abundance. Porous few-layer SnS nanosheets are in situ grown on reduced graphene oxide, forming a SnS -rGO sandwich structure via strong C-O-Sn bonds. This nano-scaled sandwich structure not only shortens Na /K and electron transport pathways but also accommodates volume expansion, thereby enabling high and stable electrochemical cycling performance of SnS -rGO. This work explores the influence of different conductive carbons (Super P and C65) on the SnS -rGO electrode. In addition, the effects of the electrolyte additive fluoroethylene carbonate (FEC) on the electrochemical performance in NIBs and KIBs is evaluated. This work provides guidelines for optimized electrode structure design, electrolyte additives and carbon additives for the realization of better NIBs and KIBs.
钠离子电池和钾离子电池(NIBs和KIBs)由于钠和钾的天然丰度高且成本低,被认为是在储能应用中替代锂离子电池(LIBs)的有前景的选择。然而,一个关键挑战是,Na/K的大尺寸导致在电化学循环过程中主体材料发生巨大的体积变化,从而导致容量快速衰减。在碱金属离子电池的负极候选材料中,SnS因其具有竞争力的高比容量、低氧化还原电位和高丰度而具有吸引力。多孔少层SnS纳米片原位生长在还原氧化石墨烯上,通过强C-O-Sn键形成SnS-rGO夹心结构。这种纳米级夹心结构不仅缩短了Na/K和电子传输路径,还能适应体积膨胀,从而使SnS-rGO具有高且稳定的电化学循环性能。这项工作探讨了不同导电碳(Super P和C65)对SnS-rGO电极的影响。此外,还评估了电解质添加剂氟代碳酸乙烯酯(FEC)对NIBs和KIBs电化学性能的影响。这项工作为实现更好的NIBs和KIBs的优化电极结构设计、电解质添加剂和碳添加剂提供了指导。