Suppr超能文献

一个基于人工智能的框架,用于研究城市社区的视觉多样性及其与社会人口变量的关系。

An AI-based framework for studying visual diversity of urban neighborhoods and its relationship with socio-demographic variables.

作者信息

Amiruzzaman Md, Zhao Ye, Amiruzzaman Stefanie, Karpinski Aryn C, Wu Tsung Heng

机构信息

Department of Computer Science, West Chester University, West Chester, PA USA.

Department of Computer Science, Kent State University, Kent, OH USA.

出版信息

J Comput Soc Sci. 2023;6(1):315-337. doi: 10.1007/s42001-022-00197-1. Epub 2022 Dec 28.

Abstract

This study presents a framework to study quantitatively geographical visual diversities of urban neighborhood from a large collection of street-view images using an Artificial Intelligence (AI)-based image segmentation technique. A variety of diversity indices are computed from the extracted visual semantics. They are utilized to discover the relationships between urban visual appearance and socio-demographic variables. This study also validates the reliability of the method with human evaluators. The methodology and results obtained from this study can potentially be used to study urban features, locate houses, establish services, and better operate municipalities.

摘要

本研究提出了一个框架,用于使用基于人工智能(AI)的图像分割技术,从大量街景图像中定量研究城市社区的地理视觉多样性。从提取的视觉语义中计算出各种多样性指数。它们被用来发现城市视觉外观与社会人口变量之间的关系。本研究还通过人类评估者验证了该方法的可靠性。本研究获得的方法和结果有可能用于研究城市特征、定位房屋、建立服务以及更好地管理市政当局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a75/9795947/7be49f0d0563/42001_2022_197_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验