Amiruzzaman Md, Zhao Ye, Amiruzzaman Stefanie, Karpinski Aryn C, Wu Tsung Heng
Department of Computer Science, West Chester University, West Chester, PA USA.
Department of Computer Science, Kent State University, Kent, OH USA.
J Comput Soc Sci. 2023;6(1):315-337. doi: 10.1007/s42001-022-00197-1. Epub 2022 Dec 28.
This study presents a framework to study quantitatively geographical visual diversities of urban neighborhood from a large collection of street-view images using an Artificial Intelligence (AI)-based image segmentation technique. A variety of diversity indices are computed from the extracted visual semantics. They are utilized to discover the relationships between urban visual appearance and socio-demographic variables. This study also validates the reliability of the method with human evaluators. The methodology and results obtained from this study can potentially be used to study urban features, locate houses, establish services, and better operate municipalities.
本研究提出了一个框架,用于使用基于人工智能(AI)的图像分割技术,从大量街景图像中定量研究城市社区的地理视觉多样性。从提取的视觉语义中计算出各种多样性指数。它们被用来发现城市视觉外观与社会人口变量之间的关系。本研究还通过人类评估者验证了该方法的可靠性。本研究获得的方法和结果有可能用于研究城市特征、定位房屋、建立服务以及更好地管理市政当局。