Suppr超能文献

StreetVizor:基于街景的人类尺度城市形态的可视化探索。

StreetVizor: Visual Exploration of Human-Scale Urban Forms Based on Street Views.

出版信息

IEEE Trans Vis Comput Graph. 2018 Jan;24(1):1004-1013. doi: 10.1109/TVCG.2017.2744159. Epub 2017 Aug 29.

Abstract

Urban forms at human-scale, i.e., urban environments that individuals can sense (e.g., sight, smell, and touch) in their daily lives, can provide unprecedented insights on a variety of applications, such as urban planning and environment auditing. The analysis of urban forms can help planners develop high-quality urban spaces through evidence-based design. However, such analysis is complex because of the involvement of spatial, multi-scale (i.e., city, region, and street), and multivariate (e.g., greenery and sky ratios) natures of urban forms. In addition, current methods either lack quantitative measurements or are limited to a small area. The primary contribution of this work is the design of StreetVizor, an interactive visual analytics system that helps planners leverage their domain knowledge in exploring human-scale urban forms based on street view images. Our system presents two-stage visual exploration: 1) an AOI Explorer for the visual comparison of spatial distributions and quantitative measurements in two areas-of-interest (AOIs) at city- and region-scales; 2) and a Street Explorer with a novel parallel coordinate plot for the exploration of the fine-grained details of the urban forms at the street-scale. We integrate visualization techniques with machine learning models to facilitate the detection of street view patterns. We illustrate the applicability of our approach with case studies on the real-world datasets of four cities, i.e., Hong Kong, Singapore, Greater London and New York City. Interviews with domain experts demonstrate the effectiveness of our system in facilitating various analytical tasks.

摘要

以人为尺度的城市形态,即在日常生活中个体可以感知的城市环境(如视觉、嗅觉和触觉),可以为各种应用提供前所未有的洞察力,如城市规划和环境审计。城市形态的分析可以帮助规划者通过循证设计来开发高质量的城市空间。然而,这种分析很复杂,因为涉及到空间、多尺度(即城市、地区和街道)和多变量(如绿化和天空比例)的城市形态性质。此外,目前的方法要么缺乏定量测量,要么仅限于小范围。这项工作的主要贡献是设计了 StreetVizor,这是一个交互式视觉分析系统,可以帮助规划者利用他们的领域知识基于街景图像探索以人为尺度的城市形态。我们的系统提出了两阶段的视觉探索:1)AOI 探索器,用于在城市和地区尺度的两个感兴趣区域(AOI)中进行空间分布和定量测量的可视化比较;2)Street 探索器,带有新颖的平行坐标图,用于探索街道尺度的城市形态的细粒度细节。我们将可视化技术与机器学习模型集成,以促进街景模式的检测。我们通过对四个城市(即香港、新加坡、大伦敦和纽约市)的真实世界数据集的案例研究来说明我们方法的适用性。与领域专家的访谈表明,我们的系统在促进各种分析任务方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验