Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Nanoscale. 2023 Jan 27;15(4):1718-1729. doi: 10.1039/d2nr04956b.
The generation and controllability of valley splitting are the major challenge in effectively utilizing valley degrees of freedom in valleytronics. Using first-principles calculations, we propose a novel multiferroic system, a AgBiPS/CrBr van der Waals heterostructure, with ferromagnetism, ferroelectricity and ferrovalley behaviors. The ferroelectric monolayer AgBiPS originally has two degenerate valleys with a large spin splitting (∼423.1 meV) at the conduction band minimum of /' points, due to inversion symmetry breaking combined with strong spin orbit coupling. Magnetic proximity coupling with the ferromagnetic layer CrBr breaks the time-reversal symmetry, damaging the degeneracy of /' valleys and causing valley splitting (∼30.5 meV). The transition energy barrier between two ferroelectric states with opposite polarization direction of the heterostructure is sufficient to prevent the spontaneous transition at room temperature, and the large intermediate barrier suggests that the ferroelectric state should be observed experimentally under ambient conditions. Nonvolatile electrical control of the valley degrees of freedom is achieved by switching the polarization direction of the ferroelectric layer in the heterostructure. The modulation of valley splitting can also be achieved by applying an external electric field and biaxial strain, as well as changing the magnetization direction. The research of nonvolatile electrical control of valley splitting in the two-dimensional AgBiPS/CrBr multiferroic heterostructure is crucial for designing all-in-one valleytronic devices, and has important theoretical significance and practical value.
谷分裂的产生和可控性是在谷电子学中有效利用谷自由度的主要挑战。我们使用第一性原理计算,提出了一种新型的多铁体系统,AgBiPS/CrBr 范德华异质结构,具有铁磁性、铁电性和铁谷行为。铁电单层 AgBiPS 最初在 /' 点导带底具有两个简并谷,由于反转对称性破缺与强自旋轨道耦合相结合,自旋分裂较大(约 423.1 meV)。与铁磁层 CrBr 的磁近邻耦合破坏了时间反演对称性,破坏了/'谷的简并性并导致谷分裂(约 30.5 meV)。异质结构中两个具有相反极化方向的铁电态之间的跃迁能量势垒足以防止室温下的自发跃迁,而中间势垒较大表明在环境条件下应观察到铁电态。通过在异质结构中切换铁电层的极化方向,可以实现对谷自由度的非易失性电控制。通过施加外电场和双轴应变以及改变磁化方向,也可以实现谷分裂的调制。在二维 AgBiPS/CrBr 多铁异质结构中对谷分裂的非易失性电控制的研究对于设计一体化谷电子器件至关重要,具有重要的理论意义和实际价值。