Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Leiden University Medical Center, LUMC, 2333 ZA Leiden, the Netherlands.
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands.
Cell Rep. 2023 Jan 31;42(1):111896. doi: 10.1016/j.celrep.2022.111896. Epub 2023 Jan 2.
Human pluripotent stem cells (hPSCs) are a powerful tool for disease modeling of hard-to-access tissues (such as the brain). Current protocols either direct neuronal differentiation with small molecules or use transcription-factor-mediated programming. In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced motor neurons (liMoNes/liMNs). This approach induces canonical MN markers including MN-specific Hb9/MNX1 in more than 95% of cells. liMNs resemble bona fide hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers, and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing on 50 hPSC lines reveals reproducible populations of distinct subtypes of cervical and brachial MNs that resemble their in vivo, embryonic counterparts. Combining small molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible production of disease-relevant MN subtypes, which is fundamental in propelling our knowledge of MN biology and its disruption in disease.
人多能干细胞(hPSCs)是一种强大的工具,可用于难以获取的组织(如大脑)的疾病建模。目前的方案要么使用小分子直接诱导神经元分化,要么使用转录因子介导的编程。在这项研究中,我们将转录因子 Neurogenin2(Ngn2)的过表达与小分子图案化相结合,将 hPSCs 分化为低级诱导运动神经元(liMoNes/liMNs)。这种方法诱导了超过 95%的细胞中包括 MN 特异性 Hb9/MNX1 在内的典型 MN 标记物。liMNs 类似于真正的 hPSC 衍生的 MN,表现出自发的电活性,表达突触标记物,并可在体外与肌肉细胞接触。对 50 条 hPSC 系进行的汇集、多重单细胞 RNA 测序揭示了具有相似体内胚胎对应物的颈和臂 MN 不同亚型的可重复群体。将小分子图案化与 Ngn2 过表达相结合,可促进与疾病相关的 MN 亚型的高产、可重复产生,这对于推动我们对 MN 生物学及其在疾病中的破坏的认识至关重要。