Giai Joris, Péron Julien, Roustit Matthieu, Cracowski Jean-Luc, Roy Pascal, Ozenne Brice, Buyse Marc, Maucort-Boulch Delphine
Univ. Grenoble Alpes, Inserm CIC1406, CHU Grenoble Alpes, TIMC UMR 5525, Grenoble, France.
Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne, France.
Stat Med. 2023 Jan 3. doi: 10.1002/sim.9648.
The Net Benefit (Δ) is a measure of the benefit-risk balance in clinical trials, based on generalized pairwise comparisons (GPC) using several prioritized outcomes and thresholds of clinical relevance. We extended Δ to N-of-1 trials, with a focus on patient-level and population-level Δ.
We developed a Δ estimator at the individual level as an extension of the stratum-specific Δ, and at the population-level as an extension of the stratified Δ. We performed a simulation study mimicking PROFIL, a series of 38 N-of-1 trials testing sildenafil in Raynaud's phenomenon, to assess the power for such an analysis with realistic data. We then reanalyzed PROFIL using GPC. This reanalysis was finally interpreted in the context of the main analysis of PROFIL which used Bayesian individual probabilities of efficacy.
Simulations under the null showed good size of the test for both individual and population levels. The test lacked power when being simulated from the true PROFIL data, even when increasing the number of repetitions up to 140 days per patient. PROFIL individual-level estimated Δ were well correlated with the probabilities of efficacy from the Bayesian analysis while showing similarly wide confidence intervals. Population-level estimated Δ was not significantly different from zero, consistently with the previous Bayesian analysis.
GPC can be used to estimate individual Δ which can then be aggregated in a meta-analytic way in N-of-1 trials. GPC ability to easily incorporate patient preferences allow for more personalized treatment evaluation, while needing much less computing time than Bayesian modeling.
净效益(Δ)是临床试验中效益-风险平衡的一种度量,基于使用多个优先结局和临床相关性阈值的广义成对比较(GPC)。我们将Δ扩展到n-of-1试验,重点关注患者层面和群体层面的Δ。
我们开发了个体层面的Δ估计器,作为特定层Δ的扩展,以及群体层面的Δ估计器,作为分层Δ的扩展。我们进行了一项模拟研究,模拟了PROFIL(一系列38项在雷诺现象中测试西地那非的n-of-1试验),以评估使用实际数据进行此类分析的效能。然后,我们使用GPC对PROFIL进行了重新分析。最后,在PROFIL主要分析的背景下对这一重新分析进行了解释,该主要分析使用了贝叶斯个体疗效概率。
在无效假设下的模拟显示,个体和群体层面的检验规模良好。当从真实的PROFIL数据进行模拟时,该检验缺乏效能,即使将每位患者的重复次数增加到140天也是如此。PROFIL个体层面估计的Δ与贝叶斯分析的疗效概率高度相关,同时显示出类似的宽置信区间。群体层面估计的Δ与零无显著差异,与先前的贝叶斯分析一致。
GPC可用于估计个体Δ,然后在n-of-1试验中以荟萃分析的方式进行汇总。GPC易于纳入患者偏好的能力允许进行更个性化的治疗评估,同时所需的计算时间比贝叶斯建模少得多。