Suppr超能文献

通过在富锂和富锰层状阴极中掺杂 Nb 实现结构稳定性和增强电化学性能,用于锂离子电池。

Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries.

机构信息

Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 16419, Republic of Korea.

出版信息

Mater Horiz. 2023 Mar 6;10(3):829-841. doi: 10.1039/d2mh01254e.

Abstract

Although Li- and Mn-rich layered oxides are attractive cathode materials possessing high energy densities, they have not been commercialized owing to voltage decay, low rate capability, poor capacity retention, and high irreversible capacity in the first cycle. To circumvent these issues, we propose a LiNiCoMnNbO (Nb-LNCM) cathode material, wherein Nb doping strengthens the transition metal oxide (TM-O) bond and alleviates the anisotropic lattice distortion while stabilizing the layered structure. During long-term cycling, maintaining a wider LiO interslab thickness in Nb-LNCM creates a favorable Li diffusion path, which improves the rate capability. Moreover, Nb doping can decrease oxygen loss, suppress the phase transition from layered to spinel and rock-salt structures, and relieve structural degradation. Nb doping results in less capacity contributions of Mn and Co and more reversible Ni and O redox reactions compared to pristine LiNiCoMnO (LNCM), which significantly mitigates the voltage decay (Δ0.289 and Δ0.516 V for Nb-LNCM and LNCM, respectively) and ensures stable capacity retention (82.7 and 70.3% for Nb-LNCM and LNCM, respectively) during the initial 100 cycles. Our study demonstrates that Nb doping is an effective and practical strategy to enhance the structural and electrochemical integrity of Li- and Mn-rich layered oxides. This promotes the development of stable cathode materials for high-energy-density lithium-ion batteries.

摘要

虽然富锂和富锰层状氧化物作为具有高能量密度的有吸引力的阴极材料,但由于电压衰减、低倍率性能、差的容量保持率以及在第一个循环中的不可逆容量较高,它们尚未商业化。为了解决这些问题,我们提出了一种 LiNiCoMnNbO(Nb-LNCM)阴极材料,其中 Nb 掺杂增强了过渡金属氧化物(TM-O)键,并减轻了各向异性晶格畸变,同时稳定了层状结构。在长期循环中,在 Nb-LNCM 中保持较宽的 LiO 夹层厚度,创造了有利的 Li 扩散途径,从而提高了倍率性能。此外,Nb 掺杂可以减少氧损失,抑制从层状到尖晶石和岩盐结构的相变,并缓解结构退化。与原始 LiNiCoMnO(LNCM)相比,Nb 掺杂导致 Mn 和 Co 的容量贡献减少,Ni 和 O 的可逆氧化还原反应增加,这显著减轻了电压衰减(Nb-LNCM 和 LNCM 的Δ0.289 和Δ0.516 V),并确保了初始 100 个循环中稳定的容量保持率(Nb-LNCM 和 LNCM 的 82.7%和 70.3%)。我们的研究表明,Nb 掺杂是增强富锂和富锰层状氧化物的结构和电化学完整性的有效且实用的策略。这促进了高能密度锂离子电池稳定阴极材料的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验